Lectures on the Theory of Algebraic Numbers:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1981
|
Schriftenreihe: | Graduate Texts in Mathematics
77 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | . . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R. |
Beschreibung: | 1 Online-Ressource (XII, 242 p) |
ISBN: | 9781475740929 9781441928146 |
ISSN: | 0072-5285 |
DOI: | 10.1007/978-1-4757-4092-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421569 | ||
003 | DE-604 | ||
005 | 20230120 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1981 |||| o||u| ||||||eng d | ||
020 | |a 9781475740929 |c Online |9 978-1-4757-4092-9 | ||
020 | |a 9781441928146 |c Print |9 978-1-4419-2814-6 | ||
024 | 7 | |a 10.1007/978-1-4757-4092-9 |2 doi | |
035 | |a (OCoLC)863893042 | ||
035 | |a (DE-599)BVBBV042421569 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a 12-01 |2 msc | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Hecke, Erich |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lectures on the Theory of Algebraic Numbers |c by Erich Hecke |
264 | 1 | |a New York, NY |b Springer New York |c 1981 | |
300 | |a 1 Online-Ressource (XII, 242 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Graduate Texts in Mathematics |v 77 |x 0072-5285 | |
500 | |a . . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Algebraische Zahl |0 (DE-588)4141847-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Theorie |0 (DE-588)4059787-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Algebraische Zahl |0 (DE-588)4141847-5 |D s |
689 | 0 | 1 | |a Theorie |0 (DE-588)4059787-8 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-4092-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856986 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094785728512 |
---|---|
any_adam_object | |
author | Hecke, Erich |
author_facet | Hecke, Erich |
author_role | aut |
author_sort | Hecke, Erich |
author_variant | e h eh |
building | Verbundindex |
bvnumber | BV042421569 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863893042 (DE-599)BVBBV042421569 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-4092-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03643nmm a2200613zcb4500</leader><controlfield tag="001">BV042421569</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230120 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1981 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475740929</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-4092-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441928146</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-2814-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-4092-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863893042</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421569</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hecke, Erich</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on the Theory of Algebraic Numbers</subfield><subfield code="c">by Erich Hecke</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1981</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 242 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">77</subfield><subfield code="x">0072-5285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Zahl</subfield><subfield code="0">(DE-588)4141847-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theorie</subfield><subfield code="0">(DE-588)4059787-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Zahl</subfield><subfield code="0">(DE-588)4141847-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Theorie</subfield><subfield code="0">(DE-588)4059787-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-4092-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856986</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042421569 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475740929 9781441928146 |
issn | 0072-5285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856986 |
oclc_num | 863893042 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 242 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1981 |
publishDateSearch | 1981 |
publishDateSort | 1981 |
publisher | Springer New York |
record_format | marc |
series2 | Graduate Texts in Mathematics |
spelling | Hecke, Erich Verfasser aut Lectures on the Theory of Algebraic Numbers by Erich Hecke New York, NY Springer New York 1981 1 Online-Ressource (XII, 242 p) txt rdacontent c rdamedia cr rdacarrier Graduate Texts in Mathematics 77 0072-5285 . . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R. Mathematics Number theory Number Theory Mathematik Algebraische Zahl (DE-588)4141847-5 gnd rswk-swf Algebraische Zahlentheorie (DE-588)4001170-7 gnd rswk-swf Theorie (DE-588)4059787-8 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Algebraische Zahl (DE-588)4141847-5 s Theorie (DE-588)4059787-8 s 2\p DE-604 Algebraische Zahlentheorie (DE-588)4001170-7 s 3\p DE-604 Zahlentheorie (DE-588)4067277-3 s 4\p DE-604 https://doi.org/10.1007/978-1-4757-4092-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hecke, Erich Lectures on the Theory of Algebraic Numbers Mathematics Number theory Number Theory Mathematik Algebraische Zahl (DE-588)4141847-5 gnd Algebraische Zahlentheorie (DE-588)4001170-7 gnd Theorie (DE-588)4059787-8 gnd Zahlentheorie (DE-588)4067277-3 gnd |
subject_GND | (DE-588)4141847-5 (DE-588)4001170-7 (DE-588)4059787-8 (DE-588)4067277-3 (DE-588)4143413-4 |
title | Lectures on the Theory of Algebraic Numbers |
title_auth | Lectures on the Theory of Algebraic Numbers |
title_exact_search | Lectures on the Theory of Algebraic Numbers |
title_full | Lectures on the Theory of Algebraic Numbers by Erich Hecke |
title_fullStr | Lectures on the Theory of Algebraic Numbers by Erich Hecke |
title_full_unstemmed | Lectures on the Theory of Algebraic Numbers by Erich Hecke |
title_short | Lectures on the Theory of Algebraic Numbers |
title_sort | lectures on the theory of algebraic numbers |
topic | Mathematics Number theory Number Theory Mathematik Algebraische Zahl (DE-588)4141847-5 gnd Algebraische Zahlentheorie (DE-588)4001170-7 gnd Theorie (DE-588)4059787-8 gnd Zahlentheorie (DE-588)4067277-3 gnd |
topic_facet | Mathematics Number theory Number Theory Mathematik Algebraische Zahl Algebraische Zahlentheorie Theorie Zahlentheorie Aufsatzsammlung |
url | https://doi.org/10.1007/978-1-4757-4092-9 |
work_keys_str_mv | AT heckeerich lecturesonthetheoryofalgebraicnumbers |