Introduction to Hamiltonian Dynamical Systems and the N-Body Problem:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1992
|
Schriftenreihe: | Applied Mathematical Sciences
90 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This text grew out of graduate level courses in mathematics, engineering and physics given at several universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. Topics covered include a detailed discussion of linear Hamiltonian systems, an introduction to variational calculus and the Maslov index, the basics of the symplectic group, an introduction to reduction, applications of Poincaré's continuation to periodic solutions, the use of normal forms, applications of fixed point theorems and KAM theory. There is a special chapter devoted to finding symmetric periodic solutions by calculus of variations methods. The main examples treated in this text are the N-body problem and various specialized problems like the restricted three-body problem. The theory of the N-body problem is used to illustrate the general theory. Some of the topics covered are the classical integrals and reduction, central configurations, the existence of periodic solutions by continuation and variational methods, stability and instability of the Lagrange triangular point. Ken Meyer is an emeritus professor at the University of Cincinnati, Glen Hall is an associate professor at Boston University, and Dan Offin is a professor at Queen's University |
Beschreibung: | 1 Online-Ressource (XII, 294 p) |
ISBN: | 9781475740738 9781475740752 |
ISSN: | 0066-5452 |
DOI: | 10.1007/978-1-4757-4073-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421567 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1992 |||| o||u| ||||||eng d | ||
020 | |a 9781475740738 |c Online |9 978-1-4757-4073-8 | ||
020 | |a 9781475740752 |c Print |9 978-1-4757-4075-2 | ||
024 | 7 | |a 10.1007/978-1-4757-4073-8 |2 doi | |
035 | |a (OCoLC)864059622 | ||
035 | |a (DE-599)BVBBV042421567 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Meyer, Kenneth R. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to Hamiltonian Dynamical Systems and the N-Body Problem |c by Kenneth R. Meyer, Glen R. Hall |
264 | 1 | |a New York, NY |b Springer New York |c 1992 | |
300 | |a 1 Online-Ressource (XII, 294 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applied Mathematical Sciences |v 90 |x 0066-5452 | |
500 | |a This text grew out of graduate level courses in mathematics, engineering and physics given at several universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. Topics covered include a detailed discussion of linear Hamiltonian systems, an introduction to variational calculus and the Maslov index, the basics of the symplectic group, an introduction to reduction, applications of Poincaré's continuation to periodic solutions, the use of normal forms, applications of fixed point theorems and KAM theory. There is a special chapter devoted to finding symmetric periodic solutions by calculus of variations methods. The main examples treated in this text are the N-body problem and various specialized problems like the restricted three-body problem. The theory of the N-body problem is used to illustrate the general theory. Some of the topics covered are the classical integrals and reduction, central configurations, the existence of periodic solutions by continuation and variational methods, stability and instability of the Lagrange triangular point. Ken Meyer is an emeritus professor at the University of Cincinnati, Glen Hall is an associate professor at Boston University, and Dan Offin is a professor at Queen's University | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Hamiltonsches System |0 (DE-588)4139943-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vielkörperproblem |0 (DE-588)4078900-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hamiltonsches System |0 (DE-588)4139943-2 |D s |
689 | 0 | 1 | |a Vielkörperproblem |0 (DE-588)4078900-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Hall, Glen R. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-4073-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856984 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094780485632 |
---|---|
any_adam_object | |
author | Meyer, Kenneth R. |
author_facet | Meyer, Kenneth R. |
author_role | aut |
author_sort | Meyer, Kenneth R. |
author_variant | k r m kr krm |
building | Verbundindex |
bvnumber | BV042421567 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864059622 (DE-599)BVBBV042421567 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-4073-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03203nmm a2200505zcb4500</leader><controlfield tag="001">BV042421567</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475740738</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-4073-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475740752</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4757-4075-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-4073-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864059622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421567</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Meyer, Kenneth R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Hamiltonian Dynamical Systems and the N-Body Problem</subfield><subfield code="c">by Kenneth R. Meyer, Glen R. Hall</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 294 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">90</subfield><subfield code="x">0066-5452</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This text grew out of graduate level courses in mathematics, engineering and physics given at several universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. Topics covered include a detailed discussion of linear Hamiltonian systems, an introduction to variational calculus and the Maslov index, the basics of the symplectic group, an introduction to reduction, applications of Poincaré's continuation to periodic solutions, the use of normal forms, applications of fixed point theorems and KAM theory. There is a special chapter devoted to finding symmetric periodic solutions by calculus of variations methods. The main examples treated in this text are the N-body problem and various specialized problems like the restricted three-body problem. The theory of the N-body problem is used to illustrate the general theory. Some of the topics covered are the classical integrals and reduction, central configurations, the existence of periodic solutions by continuation and variational methods, stability and instability of the Lagrange triangular point. Ken Meyer is an emeritus professor at the University of Cincinnati, Glen Hall is an associate professor at Boston University, and Dan Offin is a professor at Queen's University</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vielkörperproblem</subfield><subfield code="0">(DE-588)4078900-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Vielkörperproblem</subfield><subfield code="0">(DE-588)4078900-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hall, Glen R.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-4073-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856984</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421567 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475740738 9781475740752 |
issn | 0066-5452 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856984 |
oclc_num | 864059622 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 294 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Springer New York |
record_format | marc |
series2 | Applied Mathematical Sciences |
spelling | Meyer, Kenneth R. Verfasser aut Introduction to Hamiltonian Dynamical Systems and the N-Body Problem by Kenneth R. Meyer, Glen R. Hall New York, NY Springer New York 1992 1 Online-Ressource (XII, 294 p) txt rdacontent c rdamedia cr rdacarrier Applied Mathematical Sciences 90 0066-5452 This text grew out of graduate level courses in mathematics, engineering and physics given at several universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. Topics covered include a detailed discussion of linear Hamiltonian systems, an introduction to variational calculus and the Maslov index, the basics of the symplectic group, an introduction to reduction, applications of Poincaré's continuation to periodic solutions, the use of normal forms, applications of fixed point theorems and KAM theory. There is a special chapter devoted to finding symmetric periodic solutions by calculus of variations methods. The main examples treated in this text are the N-body problem and various specialized problems like the restricted three-body problem. The theory of the N-body problem is used to illustrate the general theory. Some of the topics covered are the classical integrals and reduction, central configurations, the existence of periodic solutions by continuation and variational methods, stability and instability of the Lagrange triangular point. Ken Meyer is an emeritus professor at the University of Cincinnati, Glen Hall is an associate professor at Boston University, and Dan Offin is a professor at Queen's University Mathematics Global analysis (Mathematics) Analysis Theoretical, Mathematical and Computational Physics Mathematik Hamiltonsches System (DE-588)4139943-2 gnd rswk-swf Vielkörperproblem (DE-588)4078900-7 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 s Vielkörperproblem (DE-588)4078900-7 s 1\p DE-604 Hall, Glen R. Sonstige oth https://doi.org/10.1007/978-1-4757-4073-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Meyer, Kenneth R. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem Mathematics Global analysis (Mathematics) Analysis Theoretical, Mathematical and Computational Physics Mathematik Hamiltonsches System (DE-588)4139943-2 gnd Vielkörperproblem (DE-588)4078900-7 gnd |
subject_GND | (DE-588)4139943-2 (DE-588)4078900-7 |
title | Introduction to Hamiltonian Dynamical Systems and the N-Body Problem |
title_auth | Introduction to Hamiltonian Dynamical Systems and the N-Body Problem |
title_exact_search | Introduction to Hamiltonian Dynamical Systems and the N-Body Problem |
title_full | Introduction to Hamiltonian Dynamical Systems and the N-Body Problem by Kenneth R. Meyer, Glen R. Hall |
title_fullStr | Introduction to Hamiltonian Dynamical Systems and the N-Body Problem by Kenneth R. Meyer, Glen R. Hall |
title_full_unstemmed | Introduction to Hamiltonian Dynamical Systems and the N-Body Problem by Kenneth R. Meyer, Glen R. Hall |
title_short | Introduction to Hamiltonian Dynamical Systems and the N-Body Problem |
title_sort | introduction to hamiltonian dynamical systems and the n body problem |
topic | Mathematics Global analysis (Mathematics) Analysis Theoretical, Mathematical and Computational Physics Mathematik Hamiltonsches System (DE-588)4139943-2 gnd Vielkörperproblem (DE-588)4078900-7 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Theoretical, Mathematical and Computational Physics Mathematik Hamiltonsches System Vielkörperproblem |
url | https://doi.org/10.1007/978-1-4757-4073-8 |
work_keys_str_mv | AT meyerkennethr introductiontohamiltoniandynamicalsystemsandthenbodyproblem AT hallglenr introductiontohamiltoniandynamicalsystemsandthenbodyproblem |