Groups and Symmetry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1988
|
Schriftenreihe: | Undergraduate Texts in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Groups are important because they measure symmetry. This text, designed for undergraduate mathematics students, provides a gentle introduction to the highlights of elementary group theory. Written in an informal style, the material is divided into short sections each of which deals with an important result or a new idea. Throughout the book, the emphasis is placed on concrete examples, many of them geometrical in nature, so that finite rotation groups and the seventeen wallpaper groups are treated in detail alongside theoretical results such as Lagrange's theorem, the Sylow theorems, and the classification theorem for finitely generated abelian groups. A novel feature at this level is a proof of the Nielsen-Schreier theorem, using group actions on trees. There are more than three hundred exercises and approximately sixty illustrations to help develop the student's intuition |
Beschreibung: | 1 Online-Ressource (XI, 187 p) |
ISBN: | 9781475740349 9781441930859 |
ISSN: | 0172-6056 |
DOI: | 10.1007/978-1-4757-4034-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421564 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1988 |||| o||u| ||||||eng d | ||
020 | |a 9781475740349 |c Online |9 978-1-4757-4034-9 | ||
020 | |a 9781441930859 |c Print |9 978-1-4419-3085-9 | ||
024 | 7 | |a 10.1007/978-1-4757-4034-9 |2 doi | |
035 | |a (OCoLC)863930433 | ||
035 | |a (DE-599)BVBBV042421564 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Armstrong, M. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Groups and Symmetry |c by M. A. Armstrong |
264 | 1 | |a New York, NY |b Springer New York |c 1988 | |
300 | |a 1 Online-Ressource (XI, 187 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Undergraduate Texts in Mathematics |x 0172-6056 | |
500 | |a Groups are important because they measure symmetry. This text, designed for undergraduate mathematics students, provides a gentle introduction to the highlights of elementary group theory. Written in an informal style, the material is divided into short sections each of which deals with an important result or a new idea. Throughout the book, the emphasis is placed on concrete examples, many of them geometrical in nature, so that finite rotation groups and the seventeen wallpaper groups are treated in detail alongside theoretical results such as Lagrange's theorem, the Sylow theorems, and the classification theorem for finitely generated abelian groups. A novel feature at this level is a proof of the Nielsen-Schreier theorem, using group actions on trees. There are more than three hundred exercises and approximately sixty illustrations to help develop the student's intuition | ||
648 | 7 | |a Geschichte |2 gnd |9 rswk-swf | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Lexikografie |0 (DE-588)4035548-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symmetrie |0 (DE-588)4058724-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deutsch |0 (DE-588)4113292-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4006432-3 |a Bibliografie |2 gnd-content | |
689 | 0 | 0 | |a Deutsch |0 (DE-588)4113292-0 |D s |
689 | 0 | 1 | |a Lexikografie |0 (DE-588)4035548-2 |D s |
689 | 0 | 2 | |a Geschichte |A z |
689 | 0 | 3 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 0 | 4 | |a Symmetrie |0 (DE-588)4058724-1 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-4034-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856981 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094778388480 |
---|---|
any_adam_object | |
author | Armstrong, M. A. |
author_facet | Armstrong, M. A. |
author_role | aut |
author_sort | Armstrong, M. A. |
author_variant | m a a ma maa |
building | Verbundindex |
bvnumber | BV042421564 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863930433 (DE-599)BVBBV042421564 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-4034-9 |
era | Geschichte gnd |
era_facet | Geschichte |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02943nmm a2200577zc 4500</leader><controlfield tag="001">BV042421564</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475740349</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-4034-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441930859</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-3085-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-4034-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863930433</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421564</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Armstrong, M. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Groups and Symmetry</subfield><subfield code="c">by M. A. Armstrong</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 187 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate Texts in Mathematics</subfield><subfield code="x">0172-6056</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Groups are important because they measure symmetry. This text, designed for undergraduate mathematics students, provides a gentle introduction to the highlights of elementary group theory. Written in an informal style, the material is divided into short sections each of which deals with an important result or a new idea. Throughout the book, the emphasis is placed on concrete examples, many of them geometrical in nature, so that finite rotation groups and the seventeen wallpaper groups are treated in detail alongside theoretical results such as Lagrange's theorem, the Sylow theorems, and the classification theorem for finitely generated abelian groups. A novel feature at this level is a proof of the Nielsen-Schreier theorem, using group actions on trees. There are more than three hundred exercises and approximately sixty illustrations to help develop the student's intuition</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lexikografie</subfield><subfield code="0">(DE-588)4035548-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deutsch</subfield><subfield code="0">(DE-588)4113292-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4006432-3</subfield><subfield code="a">Bibliografie</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Deutsch</subfield><subfield code="0">(DE-588)4113292-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lexikografie</subfield><subfield code="0">(DE-588)4035548-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-4034-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856981</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4006432-3 Bibliografie gnd-content |
genre_facet | Bibliografie |
id | DE-604.BV042421564 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475740349 9781441930859 |
issn | 0172-6056 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856981 |
oclc_num | 863930433 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 187 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Springer New York |
record_format | marc |
series2 | Undergraduate Texts in Mathematics |
spelling | Armstrong, M. A. Verfasser aut Groups and Symmetry by M. A. Armstrong New York, NY Springer New York 1988 1 Online-Ressource (XI, 187 p) txt rdacontent c rdamedia cr rdacarrier Undergraduate Texts in Mathematics 0172-6056 Groups are important because they measure symmetry. This text, designed for undergraduate mathematics students, provides a gentle introduction to the highlights of elementary group theory. Written in an informal style, the material is divided into short sections each of which deals with an important result or a new idea. Throughout the book, the emphasis is placed on concrete examples, many of them geometrical in nature, so that finite rotation groups and the seventeen wallpaper groups are treated in detail alongside theoretical results such as Lagrange's theorem, the Sylow theorems, and the classification theorem for finitely generated abelian groups. A novel feature at this level is a proof of the Nielsen-Schreier theorem, using group actions on trees. There are more than three hundred exercises and approximately sixty illustrations to help develop the student's intuition Geschichte gnd rswk-swf Mathematics Group theory Group Theory and Generalizations Mathematik Lexikografie (DE-588)4035548-2 gnd rswk-swf Symmetrie (DE-588)4058724-1 gnd rswk-swf Deutsch (DE-588)4113292-0 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 gnd rswk-swf 1\p (DE-588)4006432-3 Bibliografie gnd-content Deutsch (DE-588)4113292-0 s Lexikografie (DE-588)4035548-2 s Geschichte z Gruppentheorie (DE-588)4072157-7 s Symmetrie (DE-588)4058724-1 s 2\p DE-604 https://doi.org/10.1007/978-1-4757-4034-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Armstrong, M. A. Groups and Symmetry Mathematics Group theory Group Theory and Generalizations Mathematik Lexikografie (DE-588)4035548-2 gnd Symmetrie (DE-588)4058724-1 gnd Deutsch (DE-588)4113292-0 gnd Gruppentheorie (DE-588)4072157-7 gnd |
subject_GND | (DE-588)4035548-2 (DE-588)4058724-1 (DE-588)4113292-0 (DE-588)4072157-7 (DE-588)4006432-3 |
title | Groups and Symmetry |
title_auth | Groups and Symmetry |
title_exact_search | Groups and Symmetry |
title_full | Groups and Symmetry by M. A. Armstrong |
title_fullStr | Groups and Symmetry by M. A. Armstrong |
title_full_unstemmed | Groups and Symmetry by M. A. Armstrong |
title_short | Groups and Symmetry |
title_sort | groups and symmetry |
topic | Mathematics Group theory Group Theory and Generalizations Mathematik Lexikografie (DE-588)4035548-2 gnd Symmetrie (DE-588)4058724-1 gnd Deutsch (DE-588)4113292-0 gnd Gruppentheorie (DE-588)4072157-7 gnd |
topic_facet | Mathematics Group theory Group Theory and Generalizations Mathematik Lexikografie Symmetrie Deutsch Gruppentheorie Bibliografie |
url | https://doi.org/10.1007/978-1-4757-4034-9 |
work_keys_str_mv | AT armstrongma groupsandsymmetry |