Fractals and Chaos: The Mandelbrot Set and Beyond
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2004
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | "It is only twenty-three years since Benoit Mandelbrot published his famous picture of what is now called the Mandelbrot Set. The graphics were state of the art, though now they may seem primitive. But how that picture has changed our views of the mathematical and physical universe! Fractals, a term coined by Mandelbrot, are now so ubiquitous in the scientific conscience that it is difficult to remember the psychological shock of their arrival. What we see in this book is a glimpse of how Mandelbrot helped change our way of looking at the world. It is not just a book about a particular class of problems, but contains a view on how to approach the mathematical and physical universe. This view is certain not to fade, but to be part of the working philosophy of the next mathematical revolution, wherever it may take us. So read the book, look at the beautiful pictures that continue to fascinate and amaze, and enjoy! " From the foreword by Peter W Jones, Yale University This heavily illustrated book combines hard-to-find early papers by the author with additional chapters that describe the historical background and context. Key topics are quadratic dynamics and its Julia and Mandelbrot sets, nonquadratic dynamics, Kleinian limit sets, and the Minkowski measure. Benoit B Mandelbrot is Sterling Professor of Mathematical Sciences at Yale University and IBM Fellow Emeritus (Physics) at the IBM T J Watson Research Center. He was awarded the Wolf Prize for Physics in 1993 and the Japan Prize for Science and Technology in 2003 |
Beschreibung: | 1 Online-Ressource (XII, 308 p) |
ISBN: | 9781475740172 9781441918970 |
DOI: | 10.1007/978-1-4757-4017-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421562 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781475740172 |c Online |9 978-1-4757-4017-2 | ||
020 | |a 9781441918970 |c Print |9 978-1-4419-1897-0 | ||
024 | 7 | |a 10.1007/978-1-4757-4017-2 |2 doi | |
035 | |a (OCoLC)864115588 | ||
035 | |a (DE-599)BVBBV042421562 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Mandelbrot, Benoit B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fractals and Chaos |b The Mandelbrot Set and Beyond |c by Benoit B. Mandelbrot |
264 | 1 | |a New York, NY |b Springer New York |c 2004 | |
300 | |a 1 Online-Ressource (XII, 308 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a "It is only twenty-three years since Benoit Mandelbrot published his famous picture of what is now called the Mandelbrot Set. The graphics were state of the art, though now they may seem primitive. But how that picture has changed our views of the mathematical and physical universe! Fractals, a term coined by Mandelbrot, are now so ubiquitous in the scientific conscience that it is difficult to remember the psychological shock of their arrival. What we see in this book is a glimpse of how Mandelbrot helped change our way of looking at the world. It is not just a book about a particular class of problems, but contains a view on how to approach the mathematical and physical universe. This view is certain not to fade, but to be part of the working philosophy of the next mathematical revolution, wherever it may take us. So read the book, look at the beautiful pictures that continue to fascinate and amaze, and enjoy! " From the foreword by Peter W Jones, Yale University This heavily illustrated book combines hard-to-find early papers by the author with additional chapters that describe the historical background and context. Key topics are quadratic dynamics and its Julia and Mandelbrot sets, nonquadratic dynamics, Kleinian limit sets, and the Minkowski measure. Benoit B Mandelbrot is Sterling Professor of Mathematical Sciences at Yale University and IBM Fellow Emeritus (Physics) at the IBM T J Watson Research Center. He was awarded the Wolf Prize for Physics in 1993 and the Japan Prize for Science and Technology in 2003 | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 4 | |a Physics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Dynamical Systems and Ergodic Theory | |
650 | 4 | |a History of Mathematical Sciences | |
650 | 4 | |a Physics, general | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Chaotisches System |0 (DE-588)4316104-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fraktalgeometrie |0 (DE-588)4473576-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differenzierbares dynamisches System |0 (DE-588)4137931-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fraktalgeometrie |0 (DE-588)4473576-5 |D s |
689 | 0 | 1 | |a Differenzierbares dynamisches System |0 (DE-588)4137931-7 |D s |
689 | 0 | 2 | |a Chaotisches System |0 (DE-588)4316104-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-4017-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856979 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094755319808 |
---|---|
any_adam_object | |
author | Mandelbrot, Benoit B. |
author_facet | Mandelbrot, Benoit B. |
author_role | aut |
author_sort | Mandelbrot, Benoit B. |
author_variant | b b m bb bbm |
building | Verbundindex |
bvnumber | BV042421562 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864115588 (DE-599)BVBBV042421562 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-4017-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03553nmm a2200553zc 4500</leader><controlfield tag="001">BV042421562</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475740172</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-4017-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441918970</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-1897-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-4017-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864115588</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421562</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mandelbrot, Benoit B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fractals and Chaos</subfield><subfield code="b">The Mandelbrot Set and Beyond</subfield><subfield code="c">by Benoit B. Mandelbrot</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 308 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"It is only twenty-three years since Benoit Mandelbrot published his famous picture of what is now called the Mandelbrot Set. The graphics were state of the art, though now they may seem primitive. But how that picture has changed our views of the mathematical and physical universe! Fractals, a term coined by Mandelbrot, are now so ubiquitous in the scientific conscience that it is difficult to remember the psychological shock of their arrival. What we see in this book is a glimpse of how Mandelbrot helped change our way of looking at the world. It is not just a book about a particular class of problems, but contains a view on how to approach the mathematical and physical universe. This view is certain not to fade, but to be part of the working philosophy of the next mathematical revolution, wherever it may take us. So read the book, look at the beautiful pictures that continue to fascinate and amaze, and enjoy! " From the foreword by Peter W Jones, Yale University This heavily illustrated book combines hard-to-find early papers by the author with additional chapters that describe the historical background and context. Key topics are quadratic dynamics and its Julia and Mandelbrot sets, nonquadratic dynamics, Kleinian limit sets, and the Minkowski measure. Benoit B Mandelbrot is Sterling Professor of Mathematical Sciences at Yale University and IBM Fellow Emeritus (Physics) at the IBM T J Watson Research Center. He was awarded the Wolf Prize for Physics in 1993 and the Japan Prize for Science and Technology in 2003</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical Systems and Ergodic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">History of Mathematical Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktalgeometrie</subfield><subfield code="0">(DE-588)4473576-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbares dynamisches System</subfield><subfield code="0">(DE-588)4137931-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fraktalgeometrie</subfield><subfield code="0">(DE-588)4473576-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Differenzierbares dynamisches System</subfield><subfield code="0">(DE-588)4137931-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-4017-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856979</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421562 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475740172 9781441918970 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856979 |
oclc_num | 864115588 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 308 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer New York |
record_format | marc |
spelling | Mandelbrot, Benoit B. Verfasser aut Fractals and Chaos The Mandelbrot Set and Beyond by Benoit B. Mandelbrot New York, NY Springer New York 2004 1 Online-Ressource (XII, 308 p) txt rdacontent c rdamedia cr rdacarrier "It is only twenty-three years since Benoit Mandelbrot published his famous picture of what is now called the Mandelbrot Set. The graphics were state of the art, though now they may seem primitive. But how that picture has changed our views of the mathematical and physical universe! Fractals, a term coined by Mandelbrot, are now so ubiquitous in the scientific conscience that it is difficult to remember the psychological shock of their arrival. What we see in this book is a glimpse of how Mandelbrot helped change our way of looking at the world. It is not just a book about a particular class of problems, but contains a view on how to approach the mathematical and physical universe. This view is certain not to fade, but to be part of the working philosophy of the next mathematical revolution, wherever it may take us. So read the book, look at the beautiful pictures that continue to fascinate and amaze, and enjoy! " From the foreword by Peter W Jones, Yale University This heavily illustrated book combines hard-to-find early papers by the author with additional chapters that describe the historical background and context. Key topics are quadratic dynamics and its Julia and Mandelbrot sets, nonquadratic dynamics, Kleinian limit sets, and the Minkowski measure. Benoit B Mandelbrot is Sterling Professor of Mathematical Sciences at Yale University and IBM Fellow Emeritus (Physics) at the IBM T J Watson Research Center. He was awarded the Wolf Prize for Physics in 1993 and the Japan Prize for Science and Technology in 2003 Mathematics Differentiable dynamical systems Physics Mathematics, general Dynamical Systems and Ergodic Theory History of Mathematical Sciences Physics, general Statistical Physics, Dynamical Systems and Complexity Mathematik Chaotisches System (DE-588)4316104-2 gnd rswk-swf Fraktalgeometrie (DE-588)4473576-5 gnd rswk-swf Differenzierbares dynamisches System (DE-588)4137931-7 gnd rswk-swf Fraktalgeometrie (DE-588)4473576-5 s Differenzierbares dynamisches System (DE-588)4137931-7 s Chaotisches System (DE-588)4316104-2 s 1\p DE-604 https://doi.org/10.1007/978-1-4757-4017-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mandelbrot, Benoit B. Fractals and Chaos The Mandelbrot Set and Beyond Mathematics Differentiable dynamical systems Physics Mathematics, general Dynamical Systems and Ergodic Theory History of Mathematical Sciences Physics, general Statistical Physics, Dynamical Systems and Complexity Mathematik Chaotisches System (DE-588)4316104-2 gnd Fraktalgeometrie (DE-588)4473576-5 gnd Differenzierbares dynamisches System (DE-588)4137931-7 gnd |
subject_GND | (DE-588)4316104-2 (DE-588)4473576-5 (DE-588)4137931-7 |
title | Fractals and Chaos The Mandelbrot Set and Beyond |
title_auth | Fractals and Chaos The Mandelbrot Set and Beyond |
title_exact_search | Fractals and Chaos The Mandelbrot Set and Beyond |
title_full | Fractals and Chaos The Mandelbrot Set and Beyond by Benoit B. Mandelbrot |
title_fullStr | Fractals and Chaos The Mandelbrot Set and Beyond by Benoit B. Mandelbrot |
title_full_unstemmed | Fractals and Chaos The Mandelbrot Set and Beyond by Benoit B. Mandelbrot |
title_short | Fractals and Chaos |
title_sort | fractals and chaos the mandelbrot set and beyond |
title_sub | The Mandelbrot Set and Beyond |
topic | Mathematics Differentiable dynamical systems Physics Mathematics, general Dynamical Systems and Ergodic Theory History of Mathematical Sciences Physics, general Statistical Physics, Dynamical Systems and Complexity Mathematik Chaotisches System (DE-588)4316104-2 gnd Fraktalgeometrie (DE-588)4473576-5 gnd Differenzierbares dynamisches System (DE-588)4137931-7 gnd |
topic_facet | Mathematics Differentiable dynamical systems Physics Mathematics, general Dynamical Systems and Ergodic Theory History of Mathematical Sciences Physics, general Statistical Physics, Dynamical Systems and Complexity Mathematik Chaotisches System Fraktalgeometrie Differenzierbares dynamisches System |
url | https://doi.org/10.1007/978-1-4757-4017-2 |
work_keys_str_mv | AT mandelbrotbenoitb fractalsandchaosthemandelbrotsetandbeyond |