Fibre Bundles:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1966
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Graduate texts in mathematics
20 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The notion of a fibre bundle first arose out of questions posed in the 1930s on the topology and geometry of manifolds. By the year 1950 the definition of fibre bundle had been clearly formulated, the homotopy classification of fibre bundles achieved, and the theory of characteristic classes of fibre bundles developed by several mathematicians, Chern, Pontrjagin, Stiefel, and Whitney. Steenrod's book, which appeared in 1950, gave a coherent treatment of the subject up to that time. About 1955 Milnor gave a construction of a universal fibre bundle for any topological group. This construction is also included in Part I along with an elementary proof that the bundle is universal. During the five years from 1950 to 1955, Hirzebruch clarified the notion of characteristic class and used it to prove a general Riemann-Roch theorem for algebraic varieties. This was published in his Ergebnisse Monograph. A systematic development of characteristic classes and their applications to manifolds is given in Part III and is based on the approach of Hirzebruch as modified by Grothendieck |
Beschreibung: | 1 Online-Ressource (XV, 327 p) |
ISBN: | 9781475740080 9781475740103 |
ISSN: | 0072-5285 |
DOI: | 10.1007/978-1-4757-4008-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421560 | ||
003 | DE-604 | ||
005 | 20170919 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1966 |||| o||u| ||||||eng d | ||
020 | |a 9781475740080 |c Online |9 978-1-4757-4008-0 | ||
020 | |a 9781475740103 |c Print |9 978-1-4757-4010-3 | ||
024 | 7 | |a 10.1007/978-1-4757-4008-0 |2 doi | |
035 | |a (OCoLC)1165441499 | ||
035 | |a (DE-599)BVBBV042421560 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Husemöller, Dale |e Verfasser |0 (DE-588)117713058 |4 aut | |
245 | 1 | 0 | |a Fibre Bundles |c by Dale Husemoller |
250 | |a 2. ed. | ||
264 | 1 | |a New York, NY |b Springer New York |c 1966 | |
300 | |a 1 Online-Ressource (XV, 327 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 20 |x 0072-5285 | |
500 | |a The notion of a fibre bundle first arose out of questions posed in the 1930s on the topology and geometry of manifolds. By the year 1950 the definition of fibre bundle had been clearly formulated, the homotopy classification of fibre bundles achieved, and the theory of characteristic classes of fibre bundles developed by several mathematicians, Chern, Pontrjagin, Stiefel, and Whitney. Steenrod's book, which appeared in 1950, gave a coherent treatment of the subject up to that time. About 1955 Milnor gave a construction of a universal fibre bundle for any topological group. This construction is also included in Part I along with an elementary proof that the bundle is universal. During the five years from 1950 to 1955, Hirzebruch clarified the notion of characteristic class and used it to prove a general Riemann-Roch theorem for algebraic varieties. This was published in his Ergebnisse Monograph. A systematic development of characteristic classes and their applications to manifolds is given in Part III and is based on the approach of Hirzebruch as modified by Grothendieck | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Faserbündel |0 (DE-588)4135582-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Topologie |0 (DE-588)4120861-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a K-Theorie |0 (DE-588)4033335-8 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Algebraische Topologie |0 (DE-588)4120861-4 |D s |
689 | 0 | 1 | |a Faserbündel |0 (DE-588)4135582-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a K-Theorie |0 (DE-588)4033335-8 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
830 | 0 | |a Graduate texts in mathematics |v 20 |w (DE-604)BV000000067 |9 20 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-4008-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856977 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094774194176 |
---|---|
any_adam_object | |
author | Husemöller, Dale |
author_GND | (DE-588)117713058 |
author_facet | Husemöller, Dale |
author_role | aut |
author_sort | Husemöller, Dale |
author_variant | d h dh |
building | Verbundindex |
bvnumber | BV042421560 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165441499 (DE-599)BVBBV042421560 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-4008-0 |
edition | 2. ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03165nmm a2200565zcb4500</leader><controlfield tag="001">BV042421560</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170919 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1966 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475740080</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-4008-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475740103</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4757-4010-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-4008-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165441499</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421560</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Husemöller, Dale</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)117713058</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fibre Bundles</subfield><subfield code="c">by Dale Husemoller</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1966</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 327 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">20</subfield><subfield code="x">0072-5285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The notion of a fibre bundle first arose out of questions posed in the 1930s on the topology and geometry of manifolds. By the year 1950 the definition of fibre bundle had been clearly formulated, the homotopy classification of fibre bundles achieved, and the theory of characteristic classes of fibre bundles developed by several mathematicians, Chern, Pontrjagin, Stiefel, and Whitney. Steenrod's book, which appeared in 1950, gave a coherent treatment of the subject up to that time. About 1955 Milnor gave a construction of a universal fibre bundle for any topological group. This construction is also included in Part I along with an elementary proof that the bundle is universal. During the five years from 1950 to 1955, Hirzebruch clarified the notion of characteristic class and used it to prove a general Riemann-Roch theorem for algebraic varieties. This was published in his Ergebnisse Monograph. A systematic development of characteristic classes and their applications to manifolds is given in Part III and is based on the approach of Hirzebruch as modified by Grothendieck</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faserbündel</subfield><subfield code="0">(DE-588)4135582-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">K-Theorie</subfield><subfield code="0">(DE-588)4033335-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Faserbündel</subfield><subfield code="0">(DE-588)4135582-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">K-Theorie</subfield><subfield code="0">(DE-588)4033335-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">20</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-4008-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856977</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV042421560 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475740080 9781475740103 |
issn | 0072-5285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856977 |
oclc_num | 1165441499 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 327 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1966 |
publishDateSearch | 1966 |
publishDateSort | 1966 |
publisher | Springer New York |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Husemöller, Dale Verfasser (DE-588)117713058 aut Fibre Bundles by Dale Husemoller 2. ed. New York, NY Springer New York 1966 1 Online-Ressource (XV, 327 p) txt rdacontent c rdamedia cr rdacarrier Graduate texts in mathematics 20 0072-5285 The notion of a fibre bundle first arose out of questions posed in the 1930s on the topology and geometry of manifolds. By the year 1950 the definition of fibre bundle had been clearly formulated, the homotopy classification of fibre bundles achieved, and the theory of characteristic classes of fibre bundles developed by several mathematicians, Chern, Pontrjagin, Stiefel, and Whitney. Steenrod's book, which appeared in 1950, gave a coherent treatment of the subject up to that time. About 1955 Milnor gave a construction of a universal fibre bundle for any topological group. This construction is also included in Part I along with an elementary proof that the bundle is universal. During the five years from 1950 to 1955, Hirzebruch clarified the notion of characteristic class and used it to prove a general Riemann-Roch theorem for algebraic varieties. This was published in his Ergebnisse Monograph. A systematic development of characteristic classes and their applications to manifolds is given in Part III and is based on the approach of Hirzebruch as modified by Grothendieck Mathematics Mathematics, general Mathematik Faserbündel (DE-588)4135582-9 gnd rswk-swf Algebraische Topologie (DE-588)4120861-4 gnd rswk-swf K-Theorie (DE-588)4033335-8 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Algebraische Topologie (DE-588)4120861-4 s Faserbündel (DE-588)4135582-9 s 2\p DE-604 K-Theorie (DE-588)4033335-8 s 3\p DE-604 Graduate texts in mathematics 20 (DE-604)BV000000067 20 https://doi.org/10.1007/978-1-4757-4008-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Husemöller, Dale Fibre Bundles Graduate texts in mathematics Mathematics Mathematics, general Mathematik Faserbündel (DE-588)4135582-9 gnd Algebraische Topologie (DE-588)4120861-4 gnd K-Theorie (DE-588)4033335-8 gnd |
subject_GND | (DE-588)4135582-9 (DE-588)4120861-4 (DE-588)4033335-8 (DE-588)4151278-9 |
title | Fibre Bundles |
title_auth | Fibre Bundles |
title_exact_search | Fibre Bundles |
title_full | Fibre Bundles by Dale Husemoller |
title_fullStr | Fibre Bundles by Dale Husemoller |
title_full_unstemmed | Fibre Bundles by Dale Husemoller |
title_short | Fibre Bundles |
title_sort | fibre bundles |
topic | Mathematics Mathematics, general Mathematik Faserbündel (DE-588)4135582-9 gnd Algebraische Topologie (DE-588)4120861-4 gnd K-Theorie (DE-588)4033335-8 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Faserbündel Algebraische Topologie K-Theorie Einführung |
url | https://doi.org/10.1007/978-1-4757-4008-0 |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT husemollerdale fibrebundles |