Complex Semisimple Lie Algebras:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1987
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | These notes are a record of a course given in Algiers from lOth to 21st May, 1965. Their contents are as follows. The first two chapters are a summary, without proofs, of the general properties of nilpotent, solvable, and semisimple Lie algebras. These are well-known results, for which the reader can refer to, for example, Chapter I of Bourbaki or my Harvard notes. The theory of complex semisimple algebras occupies Chapters III and IV. The proofs of the main theorems are essentially complete; however, I have also found it useful to mention some complementary results without proof. These are indicated by an asterisk, and the proofs can be found in Bourbaki, Groupes et Algebres de Lie, Paris, Hermann, 1960-1975, Chapters IV-VIII. A final chapter shows, without proof, how to pass from Lie algebras to Lie groups (complex-and also compact). It is just an introduction, aimed at guiding the reader towards the topology of Lie groups and the theory of algebraic groups. I am happy to thank MM. Pierre Gigord and Daniel Lehmann, who wrote up a first draft of these notes, and also Mlle. Franr,:oise Pecha who was responsible for the typing of the manuscript |
Beschreibung: | 1 Online-Ressource (IX, 74 p) |
ISBN: | 9781475739107 9780387965697 |
DOI: | 10.1007/978-1-4757-3910-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421542 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1987 |||| o||u| ||||||eng d | ||
020 | |a 9781475739107 |c Online |9 978-1-4757-3910-7 | ||
020 | |a 9780387965697 |c Print |9 978-0-387-96569-7 | ||
024 | 7 | |a 10.1007/978-1-4757-3910-7 |2 doi | |
035 | |a (OCoLC)863879721 | ||
035 | |a (DE-599)BVBBV042421542 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.55 |2 23 | |
082 | 0 | |a 512.482 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Serre, Jean-Pierre |e Verfasser |4 aut | |
245 | 1 | 0 | |a Complex Semisimple Lie Algebras |c by Jean-Pierre Serre |
264 | 1 | |a New York, NY |b Springer New York |c 1987 | |
300 | |a 1 Online-Ressource (IX, 74 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a These notes are a record of a course given in Algiers from lOth to 21st May, 1965. Their contents are as follows. The first two chapters are a summary, without proofs, of the general properties of nilpotent, solvable, and semisimple Lie algebras. These are well-known results, for which the reader can refer to, for example, Chapter I of Bourbaki or my Harvard notes. The theory of complex semisimple algebras occupies Chapters III and IV. The proofs of the main theorems are essentially complete; however, I have also found it useful to mention some complementary results without proof. These are indicated by an asterisk, and the proofs can be found in Bourbaki, Groupes et Algebres de Lie, Paris, Hermann, 1960-1975, Chapters IV-VIII. A final chapter shows, without proof, how to pass from Lie algebras to Lie groups (complex-and also compact). It is just an introduction, aimed at guiding the reader towards the topology of Lie groups and the theory of algebraic groups. I am happy to thank MM. Pierre Gigord and Daniel Lehmann, who wrote up a first draft of these notes, and also Mlle. Franr,:oise Pecha who was responsible for the typing of the manuscript | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Komplexe Zahl |0 (DE-588)4128698-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Halbeinfache Lie-Algebra |0 (DE-588)4193986-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Halbeinfache Lie-Algebra |0 (DE-588)4193986-4 |D s |
689 | 0 | 1 | |a Komplexe Zahl |0 (DE-588)4128698-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3910-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856959 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094723862528 |
---|---|
any_adam_object | |
author | Serre, Jean-Pierre |
author_facet | Serre, Jean-Pierre |
author_role | aut |
author_sort | Serre, Jean-Pierre |
author_variant | j p s jps |
building | Verbundindex |
bvnumber | BV042421542 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863879721 (DE-599)BVBBV042421542 |
dewey-full | 512.55 512.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 512.482 |
dewey-search | 512.55 512.482 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-3910-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03016nmm a2200529zc 4500</leader><controlfield tag="001">BV042421542</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475739107</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3910-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387965697</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-96569-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3910-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863879721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421542</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Serre, Jean-Pierre</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex Semisimple Lie Algebras</subfield><subfield code="c">by Jean-Pierre Serre</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 74 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">These notes are a record of a course given in Algiers from lOth to 21st May, 1965. Their contents are as follows. The first two chapters are a summary, without proofs, of the general properties of nilpotent, solvable, and semisimple Lie algebras. These are well-known results, for which the reader can refer to, for example, Chapter I of Bourbaki or my Harvard notes. The theory of complex semisimple algebras occupies Chapters III and IV. The proofs of the main theorems are essentially complete; however, I have also found it useful to mention some complementary results without proof. These are indicated by an asterisk, and the proofs can be found in Bourbaki, Groupes et Algebres de Lie, Paris, Hermann, 1960-1975, Chapters IV-VIII. A final chapter shows, without proof, how to pass from Lie algebras to Lie groups (complex-and also compact). It is just an introduction, aimed at guiding the reader towards the topology of Lie groups and the theory of algebraic groups. I am happy to thank MM. Pierre Gigord and Daniel Lehmann, who wrote up a first draft of these notes, and also Mlle. Franr,:oise Pecha who was responsible for the typing of the manuscript</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Zahl</subfield><subfield code="0">(DE-588)4128698-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbeinfache Lie-Algebra</subfield><subfield code="0">(DE-588)4193986-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Halbeinfache Lie-Algebra</subfield><subfield code="0">(DE-588)4193986-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Komplexe Zahl</subfield><subfield code="0">(DE-588)4128698-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3910-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856959</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421542 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475739107 9780387965697 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856959 |
oclc_num | 863879721 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 74 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Springer New York |
record_format | marc |
spelling | Serre, Jean-Pierre Verfasser aut Complex Semisimple Lie Algebras by Jean-Pierre Serre New York, NY Springer New York 1987 1 Online-Ressource (IX, 74 p) txt rdacontent c rdamedia cr rdacarrier These notes are a record of a course given in Algiers from lOth to 21st May, 1965. Their contents are as follows. The first two chapters are a summary, without proofs, of the general properties of nilpotent, solvable, and semisimple Lie algebras. These are well-known results, for which the reader can refer to, for example, Chapter I of Bourbaki or my Harvard notes. The theory of complex semisimple algebras occupies Chapters III and IV. The proofs of the main theorems are essentially complete; however, I have also found it useful to mention some complementary results without proof. These are indicated by an asterisk, and the proofs can be found in Bourbaki, Groupes et Algebres de Lie, Paris, Hermann, 1960-1975, Chapters IV-VIII. A final chapter shows, without proof, how to pass from Lie algebras to Lie groups (complex-and also compact). It is just an introduction, aimed at guiding the reader towards the topology of Lie groups and the theory of algebraic groups. I am happy to thank MM. Pierre Gigord and Daniel Lehmann, who wrote up a first draft of these notes, and also Mlle. Franr,:oise Pecha who was responsible for the typing of the manuscript Mathematics Topological Groups Topological Groups, Lie Groups Mathematik Komplexe Zahl (DE-588)4128698-4 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Halbeinfache Lie-Algebra (DE-588)4193986-4 gnd rswk-swf Halbeinfache Lie-Algebra (DE-588)4193986-4 s Komplexe Zahl (DE-588)4128698-4 s 1\p DE-604 Lie-Algebra (DE-588)4130355-6 s 2\p DE-604 https://doi.org/10.1007/978-1-4757-3910-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Serre, Jean-Pierre Complex Semisimple Lie Algebras Mathematics Topological Groups Topological Groups, Lie Groups Mathematik Komplexe Zahl (DE-588)4128698-4 gnd Lie-Algebra (DE-588)4130355-6 gnd Halbeinfache Lie-Algebra (DE-588)4193986-4 gnd |
subject_GND | (DE-588)4128698-4 (DE-588)4130355-6 (DE-588)4193986-4 |
title | Complex Semisimple Lie Algebras |
title_auth | Complex Semisimple Lie Algebras |
title_exact_search | Complex Semisimple Lie Algebras |
title_full | Complex Semisimple Lie Algebras by Jean-Pierre Serre |
title_fullStr | Complex Semisimple Lie Algebras by Jean-Pierre Serre |
title_full_unstemmed | Complex Semisimple Lie Algebras by Jean-Pierre Serre |
title_short | Complex Semisimple Lie Algebras |
title_sort | complex semisimple lie algebras |
topic | Mathematics Topological Groups Topological Groups, Lie Groups Mathematik Komplexe Zahl (DE-588)4128698-4 gnd Lie-Algebra (DE-588)4130355-6 gnd Halbeinfache Lie-Algebra (DE-588)4193986-4 gnd |
topic_facet | Mathematics Topological Groups Topological Groups, Lie Groups Mathematik Komplexe Zahl Lie-Algebra Halbeinfache Lie-Algebra |
url | https://doi.org/10.1007/978-1-4757-3910-7 |
work_keys_str_mv | AT serrejeanpierre complexsemisimpleliealgebras |