Banach Algebras and Several Complex Variables:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1976
|
Ausgabe: | Second Edition |
Schriftenreihe: | Graduate Texts in Mathematics
35 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | During the past twenty years many connections have been found between the theory of analytic functions of one or more complex variables and the study of commutative Banach algebras. On the one hand, function theory has been used to answer algebraic questions such as the question of the existence of idempotents in a Banach algebra. On the other hand, concepts arising from the study of Banach algebras such as the maximal ideal space, the Silov boundary, Gleason parts, etc. have led to new questions and to new methods of proof in function theory. Roughly one third of this book isconcerned with developing some of the principal applications of function theory in several complex variables to Banach algebras. We presuppose no knowledge of severalcomplex variables on the part of the reader but develop the necessary material from scratch. The remainder of the book deals with problems of uniform approximation on compact subsets of the space of n complex variables. For n > I no complete theory exists but many important particular problems have been solved. Throughout, our aim has been to make the exposition elementary and self-contained. We have cheerfully sacrificed generality and completeness all along the way in order to make it easier to understand the main ideas |
Beschreibung: | 1 Online-Ressource (IX, 161 p) |
ISBN: | 9781475738780 9781475738803 |
ISSN: | 0072-5285 |
DOI: | 10.1007/978-1-4757-3878-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421539 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1976 |||| o||u| ||||||eng d | ||
020 | |a 9781475738780 |c Online |9 978-1-4757-3878-0 | ||
020 | |a 9781475738803 |c Print |9 978-1-4757-3880-3 | ||
024 | 7 | |a 10.1007/978-1-4757-3878-0 |2 doi | |
035 | |a (OCoLC)864072685 | ||
035 | |a (DE-599)BVBBV042421539 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Wermer, John |e Verfasser |4 aut | |
245 | 1 | 0 | |a Banach Algebras and Several Complex Variables |c by John Wermer |
250 | |a Second Edition | ||
264 | 1 | |a New York, NY |b Springer New York |c 1976 | |
300 | |a 1 Online-Ressource (IX, 161 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Graduate Texts in Mathematics |v 35 |x 0072-5285 | |
500 | |a During the past twenty years many connections have been found between the theory of analytic functions of one or more complex variables and the study of commutative Banach algebras. On the one hand, function theory has been used to answer algebraic questions such as the question of the existence of idempotents in a Banach algebra. On the other hand, concepts arising from the study of Banach algebras such as the maximal ideal space, the Silov boundary, Gleason parts, etc. have led to new questions and to new methods of proof in function theory. Roughly one third of this book isconcerned with developing some of the principal applications of function theory in several complex variables to Banach algebras. We presuppose no knowledge of severalcomplex variables on the part of the reader but develop the necessary material from scratch. The remainder of the book deals with problems of uniform approximation on compact subsets of the space of n complex variables. For n > I no complete theory exists but many important particular problems have been solved. Throughout, our aim has been to make the exposition elementary and self-contained. We have cheerfully sacrificed generality and completeness all along the way in order to make it easier to understand the main ideas | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Funktion |g Mathematik |0 (DE-588)4071510-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexe Variable |0 (DE-588)4164905-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Banach-Algebra |0 (DE-588)4193187-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktion |g Mathematik |0 (DE-588)4071510-3 |D s |
689 | 0 | 1 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |D s |
689 | 0 | 2 | |a Banach-Algebra |0 (DE-588)4193187-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Banach-Algebra |0 (DE-588)4193187-7 |D s |
689 | 1 | 1 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Banach-Algebra |0 (DE-588)4193187-7 |D s |
689 | 2 | 1 | |a Komplexe Variable |0 (DE-588)4164905-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3878-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856956 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094728056832 |
---|---|
any_adam_object | |
author | Wermer, John |
author_facet | Wermer, John |
author_role | aut |
author_sort | Wermer, John |
author_variant | j w jw |
building | Verbundindex |
bvnumber | BV042421539 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864072685 (DE-599)BVBBV042421539 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-3878-0 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03640nmm a2200625zcb4500</leader><controlfield tag="001">BV042421539</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1976 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475738780</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3878-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475738803</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4757-3880-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3878-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864072685</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421539</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wermer, John</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Banach Algebras and Several Complex Variables</subfield><subfield code="c">by John Wermer</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1976</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 161 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">35</subfield><subfield code="x">0072-5285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">During the past twenty years many connections have been found between the theory of analytic functions of one or more complex variables and the study of commutative Banach algebras. On the one hand, function theory has been used to answer algebraic questions such as the question of the existence of idempotents in a Banach algebra. On the other hand, concepts arising from the study of Banach algebras such as the maximal ideal space, the Silov boundary, Gleason parts, etc. have led to new questions and to new methods of proof in function theory. Roughly one third of this book isconcerned with developing some of the principal applications of function theory in several complex variables to Banach algebras. We presuppose no knowledge of severalcomplex variables on the part of the reader but develop the necessary material from scratch. The remainder of the book deals with problems of uniform approximation on compact subsets of the space of n complex variables. For n > I no complete theory exists but many important particular problems have been solved. Throughout, our aim has been to make the exposition elementary and self-contained. We have cheerfully sacrificed generality and completeness all along the way in order to make it easier to understand the main ideas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Variable</subfield><subfield code="0">(DE-588)4164905-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Algebra</subfield><subfield code="0">(DE-588)4193187-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Banach-Algebra</subfield><subfield code="0">(DE-588)4193187-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Banach-Algebra</subfield><subfield code="0">(DE-588)4193187-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Banach-Algebra</subfield><subfield code="0">(DE-588)4193187-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Komplexe Variable</subfield><subfield code="0">(DE-588)4164905-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3878-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856956</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421539 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475738780 9781475738803 |
issn | 0072-5285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856956 |
oclc_num | 864072685 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 161 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1976 |
publishDateSearch | 1976 |
publishDateSort | 1976 |
publisher | Springer New York |
record_format | marc |
series2 | Graduate Texts in Mathematics |
spelling | Wermer, John Verfasser aut Banach Algebras and Several Complex Variables by John Wermer Second Edition New York, NY Springer New York 1976 1 Online-Ressource (IX, 161 p) txt rdacontent c rdamedia cr rdacarrier Graduate Texts in Mathematics 35 0072-5285 During the past twenty years many connections have been found between the theory of analytic functions of one or more complex variables and the study of commutative Banach algebras. On the one hand, function theory has been used to answer algebraic questions such as the question of the existence of idempotents in a Banach algebra. On the other hand, concepts arising from the study of Banach algebras such as the maximal ideal space, the Silov boundary, Gleason parts, etc. have led to new questions and to new methods of proof in function theory. Roughly one third of this book isconcerned with developing some of the principal applications of function theory in several complex variables to Banach algebras. We presuppose no knowledge of severalcomplex variables on the part of the reader but develop the necessary material from scratch. The remainder of the book deals with problems of uniform approximation on compact subsets of the space of n complex variables. For n > I no complete theory exists but many important particular problems have been solved. Throughout, our aim has been to make the exposition elementary and self-contained. We have cheerfully sacrificed generality and completeness all along the way in order to make it easier to understand the main ideas Mathematics Mathematics, general Mathematik Funktion Mathematik (DE-588)4071510-3 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 gnd rswk-swf Komplexe Variable (DE-588)4164905-9 gnd rswk-swf Mehrere komplexe Variable (DE-588)4169285-8 gnd rswk-swf Banach-Algebra (DE-588)4193187-7 gnd rswk-swf Funktion Mathematik (DE-588)4071510-3 s Mehrere komplexe Variable (DE-588)4169285-8 s Banach-Algebra (DE-588)4193187-7 s 1\p DE-604 Funktionentheorie (DE-588)4018935-1 s 2\p DE-604 Komplexe Variable (DE-588)4164905-9 s 3\p DE-604 https://doi.org/10.1007/978-1-4757-3878-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Wermer, John Banach Algebras and Several Complex Variables Mathematics Mathematics, general Mathematik Funktion Mathematik (DE-588)4071510-3 gnd Funktionentheorie (DE-588)4018935-1 gnd Komplexe Variable (DE-588)4164905-9 gnd Mehrere komplexe Variable (DE-588)4169285-8 gnd Banach-Algebra (DE-588)4193187-7 gnd |
subject_GND | (DE-588)4071510-3 (DE-588)4018935-1 (DE-588)4164905-9 (DE-588)4169285-8 (DE-588)4193187-7 |
title | Banach Algebras and Several Complex Variables |
title_auth | Banach Algebras and Several Complex Variables |
title_exact_search | Banach Algebras and Several Complex Variables |
title_full | Banach Algebras and Several Complex Variables by John Wermer |
title_fullStr | Banach Algebras and Several Complex Variables by John Wermer |
title_full_unstemmed | Banach Algebras and Several Complex Variables by John Wermer |
title_short | Banach Algebras and Several Complex Variables |
title_sort | banach algebras and several complex variables |
topic | Mathematics Mathematics, general Mathematik Funktion Mathematik (DE-588)4071510-3 gnd Funktionentheorie (DE-588)4018935-1 gnd Komplexe Variable (DE-588)4164905-9 gnd Mehrere komplexe Variable (DE-588)4169285-8 gnd Banach-Algebra (DE-588)4193187-7 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Funktion Mathematik Funktionentheorie Komplexe Variable Mehrere komplexe Variable Banach-Algebra |
url | https://doi.org/10.1007/978-1-4757-3878-0 |
work_keys_str_mv | AT wermerjohn banachalgebrasandseveralcomplexvariables |