Riemannian Geometry of Contact and Symplectic Manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2002
|
Schriftenreihe: | Progress in Mathematics
203 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This monograph deals with the Riemannian geometry of both symplectic and contact manifolds, with particular emphasis on the latter. The text is carefully presented. Topics unfold systematically from Chapter 1, which examines the general theory of symplectic manifolds. Principal circle bundles (Chapter 2) are then discussed as a prelude to the Boothby--Wang fibration of a compact regular contact manifold in Chapter 3, which deals with the general theory of contact manifolds. Chapter 4 focuses on the general setting of Riemannian metrics associated with both symplectic and contact structures, and Chapter 5 is devoted to integral submanifolds of the contact subbundle. Topics treated in the subsequent chapters include Sasakian manifolds, the important study of the curvature of contact metric manifolds, submanifold theory in both the K"hler and Sasakian settings, tangent sphere bundles, curvature functionals, complex contact manifolds and 3-Sasakian manifolds. The book serves both as a general reference for mathematicians to the basic properties of symplectic and contact manifolds and as an excellent resource for graduate students and researchers in the Riemannian geometric arena. The prerequisite for this text is a basic course in Riemannian geometry |
Beschreibung: | 1 Online-Ressource (XII, 260 p) |
ISBN: | 9781475736045 9781475736069 |
DOI: | 10.1007/978-1-4757-3604-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421495 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9781475736045 |c Online |9 978-1-4757-3604-5 | ||
020 | |a 9781475736069 |c Print |9 978-1-4757-3606-9 | ||
024 | 7 | |a 10.1007/978-1-4757-3604-5 |2 doi | |
035 | |a (OCoLC)858997580 | ||
035 | |a (DE-599)BVBBV042421495 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Blair, David E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Riemannian Geometry of Contact and Symplectic Manifolds |c by David E. Blair |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2002 | |
300 | |a 1 Online-Ressource (XII, 260 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 203 | |
500 | |a This monograph deals with the Riemannian geometry of both symplectic and contact manifolds, with particular emphasis on the latter. The text is carefully presented. Topics unfold systematically from Chapter 1, which examines the general theory of symplectic manifolds. Principal circle bundles (Chapter 2) are then discussed as a prelude to the Boothby--Wang fibration of a compact regular contact manifold in Chapter 3, which deals with the general theory of contact manifolds. Chapter 4 focuses on the general setting of Riemannian metrics associated with both symplectic and contact structures, and Chapter 5 is devoted to integral submanifolds of the contact subbundle. Topics treated in the subsequent chapters include Sasakian manifolds, the important study of the curvature of contact metric manifolds, submanifold theory in both the K"hler and Sasakian settings, tangent sphere bundles, curvature functionals, complex contact manifolds and 3-Sasakian manifolds. The book serves both as a general reference for mathematicians to the basic properties of symplectic and contact manifolds and as an excellent resource for graduate students and researchers in the Riemannian geometric arena. The prerequisite for this text is a basic course in Riemannian geometry | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Kontaktmannigfaltigkeit |0 (DE-588)4669522-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symplektische Mannigfaltigkeit |0 (DE-588)4290704-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |D s |
689 | 0 | 1 | |a Symplektische Mannigfaltigkeit |0 (DE-588)4290704-4 |D s |
689 | 0 | 2 | |a Kontaktmannigfaltigkeit |0 (DE-588)4669522-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3604-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856912 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094627393536 |
---|---|
any_adam_object | |
author | Blair, David E. |
author_facet | Blair, David E. |
author_role | aut |
author_sort | Blair, David E. |
author_variant | d e b de deb |
building | Verbundindex |
bvnumber | BV042421495 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)858997580 (DE-599)BVBBV042421495 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-3604-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03210nmm a2200529zcb4500</leader><controlfield tag="001">BV042421495</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475736045</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3604-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475736069</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4757-3606-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3604-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)858997580</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421495</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Blair, David E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Riemannian Geometry of Contact and Symplectic Manifolds</subfield><subfield code="c">by David E. Blair</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 260 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">203</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph deals with the Riemannian geometry of both symplectic and contact manifolds, with particular emphasis on the latter. The text is carefully presented. Topics unfold systematically from Chapter 1, which examines the general theory of symplectic manifolds. Principal circle bundles (Chapter 2) are then discussed as a prelude to the Boothby--Wang fibration of a compact regular contact manifold in Chapter 3, which deals with the general theory of contact manifolds. Chapter 4 focuses on the general setting of Riemannian metrics associated with both symplectic and contact structures, and Chapter 5 is devoted to integral submanifolds of the contact subbundle. Topics treated in the subsequent chapters include Sasakian manifolds, the important study of the curvature of contact metric manifolds, submanifold theory in both the K"hler and Sasakian settings, tangent sphere bundles, curvature functionals, complex contact manifolds and 3-Sasakian manifolds. The book serves both as a general reference for mathematicians to the basic properties of symplectic and contact manifolds and as an excellent resource for graduate students and researchers in the Riemannian geometric arena. The prerequisite for this text is a basic course in Riemannian geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontaktmannigfaltigkeit</subfield><subfield code="0">(DE-588)4669522-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4290704-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Symplektische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4290704-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kontaktmannigfaltigkeit</subfield><subfield code="0">(DE-588)4669522-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3604-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856912</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421495 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475736045 9781475736069 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856912 |
oclc_num | 858997580 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 260 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Blair, David E. Verfasser aut Riemannian Geometry of Contact and Symplectic Manifolds by David E. Blair Boston, MA Birkhäuser Boston 2002 1 Online-Ressource (XII, 260 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 203 This monograph deals with the Riemannian geometry of both symplectic and contact manifolds, with particular emphasis on the latter. The text is carefully presented. Topics unfold systematically from Chapter 1, which examines the general theory of symplectic manifolds. Principal circle bundles (Chapter 2) are then discussed as a prelude to the Boothby--Wang fibration of a compact regular contact manifold in Chapter 3, which deals with the general theory of contact manifolds. Chapter 4 focuses on the general setting of Riemannian metrics associated with both symplectic and contact structures, and Chapter 5 is devoted to integral submanifolds of the contact subbundle. Topics treated in the subsequent chapters include Sasakian manifolds, the important study of the curvature of contact metric manifolds, submanifold theory in both the K"hler and Sasakian settings, tangent sphere bundles, curvature functionals, complex contact manifolds and 3-Sasakian manifolds. The book serves both as a general reference for mathematicians to the basic properties of symplectic and contact manifolds and as an excellent resource for graduate students and researchers in the Riemannian geometric arena. The prerequisite for this text is a basic course in Riemannian geometry Mathematics Global differential geometry Cell aggregation / Mathematics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Kontaktmannigfaltigkeit (DE-588)4669522-9 gnd rswk-swf Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd rswk-swf Riemannsche Geometrie (DE-588)4128462-8 gnd rswk-swf Riemannsche Geometrie (DE-588)4128462-8 s Symplektische Mannigfaltigkeit (DE-588)4290704-4 s Kontaktmannigfaltigkeit (DE-588)4669522-9 s 1\p DE-604 https://doi.org/10.1007/978-1-4757-3604-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Blair, David E. Riemannian Geometry of Contact and Symplectic Manifolds Mathematics Global differential geometry Cell aggregation / Mathematics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Kontaktmannigfaltigkeit (DE-588)4669522-9 gnd Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd Riemannsche Geometrie (DE-588)4128462-8 gnd |
subject_GND | (DE-588)4669522-9 (DE-588)4290704-4 (DE-588)4128462-8 |
title | Riemannian Geometry of Contact and Symplectic Manifolds |
title_auth | Riemannian Geometry of Contact and Symplectic Manifolds |
title_exact_search | Riemannian Geometry of Contact and Symplectic Manifolds |
title_full | Riemannian Geometry of Contact and Symplectic Manifolds by David E. Blair |
title_fullStr | Riemannian Geometry of Contact and Symplectic Manifolds by David E. Blair |
title_full_unstemmed | Riemannian Geometry of Contact and Symplectic Manifolds by David E. Blair |
title_short | Riemannian Geometry of Contact and Symplectic Manifolds |
title_sort | riemannian geometry of contact and symplectic manifolds |
topic | Mathematics Global differential geometry Cell aggregation / Mathematics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Kontaktmannigfaltigkeit (DE-588)4669522-9 gnd Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd Riemannsche Geometrie (DE-588)4128462-8 gnd |
topic_facet | Mathematics Global differential geometry Cell aggregation / Mathematics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Kontaktmannigfaltigkeit Symplektische Mannigfaltigkeit Riemannsche Geometrie |
url | https://doi.org/10.1007/978-1-4757-3604-5 |
work_keys_str_mv | AT blairdavide riemanniangeometryofcontactandsymplecticmanifolds |