Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2002
|
Schriftenreihe: | Nonconvex Optimization and Its Applications
65 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Interest in constrained optimization originated with the simple linear programming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to revisit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the development of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming literature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs |
Beschreibung: | 1 Online-Ressource (XXV, 478 p) |
ISBN: | 9781475735321 9781441952356 |
ISSN: | 1571-568X |
DOI: | 10.1007/978-1-4757-3532-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421490 | ||
003 | DE-604 | ||
005 | 20171109 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9781475735321 |c Online |9 978-1-4757-3532-1 | ||
020 | |a 9781441952356 |c Print |9 978-1-4419-5235-6 | ||
024 | 7 | |a 10.1007/978-1-4757-3532-1 |2 doi | |
035 | |a (OCoLC)864053880 | ||
035 | |a (DE-599)BVBBV042421490 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.6 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Tawarmalani, Mohit |e Verfasser |4 aut | |
245 | 1 | 0 | |a Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming |b Theory, Algorithms, Software, and Applications |c by Mohit Tawarmalani, Nikolaos V. Sahinidis |
264 | 1 | |a Boston, MA |b Springer US |c 2002 | |
300 | |a 1 Online-Ressource (XXV, 478 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Nonconvex Optimization and Its Applications |v 65 |x 1571-568X | |
500 | |a Interest in constrained optimization originated with the simple linear programming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to revisit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the development of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming literature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Chemistry | |
650 | 4 | |a Electronic data processing | |
650 | 4 | |a Discrete groups | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Operations research | |
650 | 4 | |a Optimization | |
650 | 4 | |a Numeric Computing | |
650 | 4 | |a Operation Research/Decision Theory | |
650 | 4 | |a Convex and Discrete Geometry | |
650 | 4 | |a Computer Applications in Chemistry | |
650 | 4 | |a Chemie | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Nichtlineare Optimierung |0 (DE-588)4128192-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gemischt-ganzzahlige Optimierung |0 (DE-588)4156566-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Globale Optimierung |0 (DE-588)4140067-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Globale Optimierung |0 (DE-588)4140067-7 |D s |
689 | 0 | 1 | |a Gemischt-ganzzahlige Optimierung |0 (DE-588)4156566-6 |D s |
689 | 0 | 2 | |a Nichtlineare Optimierung |0 (DE-588)4128192-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Sahinidis, Nikolaos V. |e Sonstige |4 oth | |
830 | 0 | |a Nonconvex Optimization and Its Applications |v 65 |w (DE-604)BV010085908 |9 65 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3532-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856907 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094755319808 |
---|---|
any_adam_object | |
author | Tawarmalani, Mohit |
author_facet | Tawarmalani, Mohit |
author_role | aut |
author_sort | Tawarmalani, Mohit |
author_variant | m t mt |
building | Verbundindex |
bvnumber | BV042421490 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864053880 (DE-599)BVBBV042421490 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-3532-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04141nmm a2200649zcb4500</leader><controlfield tag="001">BV042421490</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171109 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475735321</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3532-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441952356</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-5235-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3532-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864053880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421490</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tawarmalani, Mohit</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming</subfield><subfield code="b">Theory, Algorithms, Software, and Applications</subfield><subfield code="c">by Mohit Tawarmalani, Nikolaos V. Sahinidis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXV, 478 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Nonconvex Optimization and Its Applications</subfield><subfield code="v">65</subfield><subfield code="x">1571-568X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Interest in constrained optimization originated with the simple linear programming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to revisit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the development of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming literature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numeric Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operation Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex and Discrete Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Applications in Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Optimierung</subfield><subfield code="0">(DE-588)4128192-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gemischt-ganzzahlige Optimierung</subfield><subfield code="0">(DE-588)4156566-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Optimierung</subfield><subfield code="0">(DE-588)4140067-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Globale Optimierung</subfield><subfield code="0">(DE-588)4140067-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gemischt-ganzzahlige Optimierung</subfield><subfield code="0">(DE-588)4156566-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Nichtlineare Optimierung</subfield><subfield code="0">(DE-588)4128192-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sahinidis, Nikolaos V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Nonconvex Optimization and Its Applications</subfield><subfield code="v">65</subfield><subfield code="w">(DE-604)BV010085908</subfield><subfield code="9">65</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3532-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856907</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421490 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475735321 9781441952356 |
issn | 1571-568X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856907 |
oclc_num | 864053880 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXV, 478 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer US |
record_format | marc |
series | Nonconvex Optimization and Its Applications |
series2 | Nonconvex Optimization and Its Applications |
spelling | Tawarmalani, Mohit Verfasser aut Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming Theory, Algorithms, Software, and Applications by Mohit Tawarmalani, Nikolaos V. Sahinidis Boston, MA Springer US 2002 1 Online-Ressource (XXV, 478 p) txt rdacontent c rdamedia cr rdacarrier Nonconvex Optimization and Its Applications 65 1571-568X Interest in constrained optimization originated with the simple linear programming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to revisit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the development of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming literature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs Mathematics Chemistry Electronic data processing Discrete groups Mathematical optimization Operations research Optimization Numeric Computing Operation Research/Decision Theory Convex and Discrete Geometry Computer Applications in Chemistry Chemie Datenverarbeitung Mathematik Nichtlineare Optimierung (DE-588)4128192-5 gnd rswk-swf Gemischt-ganzzahlige Optimierung (DE-588)4156566-6 gnd rswk-swf Globale Optimierung (DE-588)4140067-7 gnd rswk-swf Globale Optimierung (DE-588)4140067-7 s Gemischt-ganzzahlige Optimierung (DE-588)4156566-6 s Nichtlineare Optimierung (DE-588)4128192-5 s 1\p DE-604 Sahinidis, Nikolaos V. Sonstige oth Nonconvex Optimization and Its Applications 65 (DE-604)BV010085908 65 https://doi.org/10.1007/978-1-4757-3532-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Tawarmalani, Mohit Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming Theory, Algorithms, Software, and Applications Nonconvex Optimization and Its Applications Mathematics Chemistry Electronic data processing Discrete groups Mathematical optimization Operations research Optimization Numeric Computing Operation Research/Decision Theory Convex and Discrete Geometry Computer Applications in Chemistry Chemie Datenverarbeitung Mathematik Nichtlineare Optimierung (DE-588)4128192-5 gnd Gemischt-ganzzahlige Optimierung (DE-588)4156566-6 gnd Globale Optimierung (DE-588)4140067-7 gnd |
subject_GND | (DE-588)4128192-5 (DE-588)4156566-6 (DE-588)4140067-7 |
title | Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming Theory, Algorithms, Software, and Applications |
title_auth | Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming Theory, Algorithms, Software, and Applications |
title_exact_search | Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming Theory, Algorithms, Software, and Applications |
title_full | Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming Theory, Algorithms, Software, and Applications by Mohit Tawarmalani, Nikolaos V. Sahinidis |
title_fullStr | Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming Theory, Algorithms, Software, and Applications by Mohit Tawarmalani, Nikolaos V. Sahinidis |
title_full_unstemmed | Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming Theory, Algorithms, Software, and Applications by Mohit Tawarmalani, Nikolaos V. Sahinidis |
title_short | Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming |
title_sort | convexification and global optimization in continuous and mixed integer nonlinear programming theory algorithms software and applications |
title_sub | Theory, Algorithms, Software, and Applications |
topic | Mathematics Chemistry Electronic data processing Discrete groups Mathematical optimization Operations research Optimization Numeric Computing Operation Research/Decision Theory Convex and Discrete Geometry Computer Applications in Chemistry Chemie Datenverarbeitung Mathematik Nichtlineare Optimierung (DE-588)4128192-5 gnd Gemischt-ganzzahlige Optimierung (DE-588)4156566-6 gnd Globale Optimierung (DE-588)4140067-7 gnd |
topic_facet | Mathematics Chemistry Electronic data processing Discrete groups Mathematical optimization Operations research Optimization Numeric Computing Operation Research/Decision Theory Convex and Discrete Geometry Computer Applications in Chemistry Chemie Datenverarbeitung Mathematik Nichtlineare Optimierung Gemischt-ganzzahlige Optimierung Globale Optimierung |
url | https://doi.org/10.1007/978-1-4757-3532-1 |
volume_link | (DE-604)BV010085908 |
work_keys_str_mv | AT tawarmalanimohit convexificationandglobaloptimizationincontinuousandmixedintegernonlinearprogrammingtheoryalgorithmssoftwareandapplications AT sahinidisnikolaosv convexificationandglobaloptimizationincontinuousandmixedintegernonlinearprogrammingtheoryalgorithmssoftwareandapplications |