Transport Modeling in Hydrogeochemical Systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2001
|
Schriftenreihe: | Interdisciplinary Applied Mathematics
15 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The subject of this monograph lies in the joint areas of applied mathematics and hydrogeology. The goals are to introduce various mathematical techniques and ideas to applied scientists while at the same time to reveal to applied mathematicians an exciting catalog of interesting equations and examples, some of which have not undergone the rigors of mathematical analysis. Of course, there is a danger in a dual endeavor- the applied scientist may feel the mathematical models lack physical depth and the mathematician may think the mathematics is trivial. However, mathematical modeling has established itself firmly as a tool that can not only lead to greater understanding of the science, but can also be a catalyst for the advancement of science. I hope the presentation, written in the spirit of mathematical modeling, has a balance that bridges these two areas and spawns some cross-fertilization. Notwithstanding, the reader should fully understand the idea of a mathematical model. In the world of reality we are often faced with describing and predicting the results of experiments. A mathematical model is a set of equations that encapsulates reality; it is a caricature of the real physical system that aids in our understanding of real phenomena. A good model extracts the essential features of the problem and lays out, in a simple manner, those processes and interactions that are important. By design, mathematical models should have predictive capability |
Beschreibung: | 1 Online-Ressource (XIV, 226 p) |
ISBN: | 9781475735185 9781441929327 |
ISSN: | 0939-6047 |
DOI: | 10.1007/978-1-4757-3518-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421488 | ||
003 | DE-604 | ||
005 | 20180108 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781475735185 |c Online |9 978-1-4757-3518-5 | ||
020 | |a 9781441929327 |c Print |9 978-1-4419-2932-7 | ||
024 | 7 | |a 10.1007/978-1-4757-3518-5 |2 doi | |
035 | |a (OCoLC)1184503648 | ||
035 | |a (DE-599)BVBBV042421488 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Logan, J. David |e Verfasser |4 aut | |
245 | 1 | 0 | |a Transport Modeling in Hydrogeochemical Systems |c by J. David Logan |
264 | 1 | |a New York, NY |b Springer New York |c 2001 | |
300 | |a 1 Online-Ressource (XIV, 226 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Interdisciplinary Applied Mathematics |v 15 |x 0939-6047 | |
500 | |a The subject of this monograph lies in the joint areas of applied mathematics and hydrogeology. The goals are to introduce various mathematical techniques and ideas to applied scientists while at the same time to reveal to applied mathematicians an exciting catalog of interesting equations and examples, some of which have not undergone the rigors of mathematical analysis. Of course, there is a danger in a dual endeavor- the applied scientist may feel the mathematical models lack physical depth and the mathematician may think the mathematics is trivial. However, mathematical modeling has established itself firmly as a tool that can not only lead to greater understanding of the science, but can also be a catalyst for the advancement of science. I hope the presentation, written in the spirit of mathematical modeling, has a balance that bridges these two areas and spawns some cross-fertilization. Notwithstanding, the reader should fully understand the idea of a mathematical model. In the world of reality we are often faced with describing and predicting the results of experiments. A mathematical model is a set of equations that encapsulates reality; it is a caricature of the real physical system that aids in our understanding of real phenomena. A good model extracts the essential features of the problem and lays out, in a simple manner, those processes and interactions that are important. By design, mathematical models should have predictive capability | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geography | |
650 | 4 | |a Hydraulic engineering | |
650 | 4 | |a Environmental sciences | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Hydrogeology | |
650 | 4 | |a Earth Sciences, general | |
650 | 4 | |a Math. Appl. in Environmental Science | |
650 | 4 | |a Geografie | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Stoffübertragung |0 (DE-588)4057696-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hydrogeochemie |0 (DE-588)4225478-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hydrogeochemie |0 (DE-588)4225478-4 |D s |
689 | 0 | 1 | |a Stoffübertragung |0 (DE-588)4057696-6 |D s |
689 | 0 | 2 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 3 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Interdisciplinary Applied Mathematics |v 15 |w (DE-604)BV004216726 |9 15 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3518-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856905 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094750076929 |
---|---|
any_adam_object | |
author | Logan, J. David |
author_facet | Logan, J. David |
author_role | aut |
author_sort | Logan, J. David |
author_variant | j d l jd jdl |
building | Verbundindex |
bvnumber | BV042421488 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184503648 (DE-599)BVBBV042421488 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-3518-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03718nmm a2200613zcb4500</leader><controlfield tag="001">BV042421488</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180108 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475735185</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3518-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441929327</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-2932-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3518-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184503648</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421488</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Logan, J. David</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transport Modeling in Hydrogeochemical Systems</subfield><subfield code="c">by J. David Logan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 226 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Interdisciplinary Applied Mathematics</subfield><subfield code="v">15</subfield><subfield code="x">0939-6047</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The subject of this monograph lies in the joint areas of applied mathematics and hydrogeology. The goals are to introduce various mathematical techniques and ideas to applied scientists while at the same time to reveal to applied mathematicians an exciting catalog of interesting equations and examples, some of which have not undergone the rigors of mathematical analysis. Of course, there is a danger in a dual endeavor- the applied scientist may feel the mathematical models lack physical depth and the mathematician may think the mathematics is trivial. However, mathematical modeling has established itself firmly as a tool that can not only lead to greater understanding of the science, but can also be a catalyst for the advancement of science. I hope the presentation, written in the spirit of mathematical modeling, has a balance that bridges these two areas and spawns some cross-fertilization. Notwithstanding, the reader should fully understand the idea of a mathematical model. In the world of reality we are often faced with describing and predicting the results of experiments. A mathematical model is a set of equations that encapsulates reality; it is a caricature of the real physical system that aids in our understanding of real phenomena. A good model extracts the essential features of the problem and lays out, in a simple manner, those processes and interactions that are important. By design, mathematical models should have predictive capability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogeology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth Sciences, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Math. Appl. in Environmental Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geografie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stoffübertragung</subfield><subfield code="0">(DE-588)4057696-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hydrogeochemie</subfield><subfield code="0">(DE-588)4225478-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hydrogeochemie</subfield><subfield code="0">(DE-588)4225478-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stoffübertragung</subfield><subfield code="0">(DE-588)4057696-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Interdisciplinary Applied Mathematics</subfield><subfield code="v">15</subfield><subfield code="w">(DE-604)BV004216726</subfield><subfield code="9">15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3518-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856905</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421488 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475735185 9781441929327 |
issn | 0939-6047 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856905 |
oclc_num | 1184503648 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 226 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer New York |
record_format | marc |
series | Interdisciplinary Applied Mathematics |
series2 | Interdisciplinary Applied Mathematics |
spelling | Logan, J. David Verfasser aut Transport Modeling in Hydrogeochemical Systems by J. David Logan New York, NY Springer New York 2001 1 Online-Ressource (XIV, 226 p) txt rdacontent c rdamedia cr rdacarrier Interdisciplinary Applied Mathematics 15 0939-6047 The subject of this monograph lies in the joint areas of applied mathematics and hydrogeology. The goals are to introduce various mathematical techniques and ideas to applied scientists while at the same time to reveal to applied mathematicians an exciting catalog of interesting equations and examples, some of which have not undergone the rigors of mathematical analysis. Of course, there is a danger in a dual endeavor- the applied scientist may feel the mathematical models lack physical depth and the mathematician may think the mathematics is trivial. However, mathematical modeling has established itself firmly as a tool that can not only lead to greater understanding of the science, but can also be a catalyst for the advancement of science. I hope the presentation, written in the spirit of mathematical modeling, has a balance that bridges these two areas and spawns some cross-fertilization. Notwithstanding, the reader should fully understand the idea of a mathematical model. In the world of reality we are often faced with describing and predicting the results of experiments. A mathematical model is a set of equations that encapsulates reality; it is a caricature of the real physical system that aids in our understanding of real phenomena. A good model extracts the essential features of the problem and lays out, in a simple manner, those processes and interactions that are important. By design, mathematical models should have predictive capability Mathematics Geography Hydraulic engineering Environmental sciences Applications of Mathematics Hydrogeology Earth Sciences, general Math. Appl. in Environmental Science Geografie Mathematik Stoffübertragung (DE-588)4057696-6 gnd rswk-swf Hydrogeochemie (DE-588)4225478-4 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Hydrogeochemie (DE-588)4225478-4 s Stoffübertragung (DE-588)4057696-6 s Partielle Differentialgleichung (DE-588)4044779-0 s Mathematisches Modell (DE-588)4114528-8 s 1\p DE-604 Interdisciplinary Applied Mathematics 15 (DE-604)BV004216726 15 https://doi.org/10.1007/978-1-4757-3518-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Logan, J. David Transport Modeling in Hydrogeochemical Systems Interdisciplinary Applied Mathematics Mathematics Geography Hydraulic engineering Environmental sciences Applications of Mathematics Hydrogeology Earth Sciences, general Math. Appl. in Environmental Science Geografie Mathematik Stoffübertragung (DE-588)4057696-6 gnd Hydrogeochemie (DE-588)4225478-4 gnd Mathematisches Modell (DE-588)4114528-8 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4057696-6 (DE-588)4225478-4 (DE-588)4114528-8 (DE-588)4044779-0 |
title | Transport Modeling in Hydrogeochemical Systems |
title_auth | Transport Modeling in Hydrogeochemical Systems |
title_exact_search | Transport Modeling in Hydrogeochemical Systems |
title_full | Transport Modeling in Hydrogeochemical Systems by J. David Logan |
title_fullStr | Transport Modeling in Hydrogeochemical Systems by J. David Logan |
title_full_unstemmed | Transport Modeling in Hydrogeochemical Systems by J. David Logan |
title_short | Transport Modeling in Hydrogeochemical Systems |
title_sort | transport modeling in hydrogeochemical systems |
topic | Mathematics Geography Hydraulic engineering Environmental sciences Applications of Mathematics Hydrogeology Earth Sciences, general Math. Appl. in Environmental Science Geografie Mathematik Stoffübertragung (DE-588)4057696-6 gnd Hydrogeochemie (DE-588)4225478-4 gnd Mathematisches Modell (DE-588)4114528-8 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Mathematics Geography Hydraulic engineering Environmental sciences Applications of Mathematics Hydrogeology Earth Sciences, general Math. Appl. in Environmental Science Geografie Mathematik Stoffübertragung Hydrogeochemie Mathematisches Modell Partielle Differentialgleichung |
url | https://doi.org/10.1007/978-1-4757-3518-5 |
volume_link | (DE-604)BV004216726 |
work_keys_str_mv | AT loganjdavid transportmodelinginhydrogeochemicalsystems |