Functional Analysis and Infinite-Dimensional Geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2001
|
Schriftenreihe: | Canadian Mathematical Society / Société mathématique du Canada
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization, and other branches ofmathematics. This book is intended as an introduction to linear functional analysis and to some parts of infinite-dimensional Banach space theory. The first seven chapters are directed mainly to undergraduate and grad uate students. We have strived to make the text easily readable and as self-contained as possible. In particular, we proved many basic facts that are considered "folklore." An important part of the text is a large number of exercises with detailed hints for their solution. They complement the material in the chapters and contain many important results. The last fivechapters introduce the reader to selected topics in the theory of Banach spaces related to smoothness and topology.This part of the book isintended as an introduction to and a complement ofexisting books on the subject ([Bea], [BeLi], [DGZ3]' [Disl], [Dis2], [Fab], [JoL3], [LiT2], [Phe2]' [Woj]). Some material is presented here for the first time in a monograph form. For further reading in this area, we recommend for instance [Gil], [God4], [Gue], [JoL3], [Kec], [LjSo], [Neg], [MeNe]' [Oxt], [RoJa], [Sem], [Sin3], [TaI2], and [Yael. The text is based on graduate courses taught at the University ofAlberta in Edmonton in the years 1984-1997. These courses were also taken by many senior students in the Honors undergraduate program in Edmonton |
Beschreibung: | 1 Online-Ressource (IX, 451 p) |
ISBN: | 9781475734805 9781441929129 |
ISSN: | 1613-5237 |
DOI: | 10.1007/978-1-4757-3480-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421482 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781475734805 |c Online |9 978-1-4757-3480-5 | ||
020 | |a 9781441929129 |c Print |9 978-1-4419-2912-9 | ||
024 | 7 | |a 10.1007/978-1-4757-3480-5 |2 doi | |
035 | |a (OCoLC)864063699 | ||
035 | |a (DE-599)BVBBV042421482 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Fabian, Marián |e Verfasser |4 aut | |
245 | 1 | 0 | |a Functional Analysis and Infinite-Dimensional Geometry |c by Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler |
264 | 1 | |a New York, NY |b Springer New York |c 2001 | |
300 | |a 1 Online-Ressource (IX, 451 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Canadian Mathematical Society / Société mathématique du Canada |x 1613-5237 | |
500 | |a Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization, and other branches ofmathematics. This book is intended as an introduction to linear functional analysis and to some parts of infinite-dimensional Banach space theory. The first seven chapters are directed mainly to undergraduate and grad uate students. We have strived to make the text easily readable and as self-contained as possible. In particular, we proved many basic facts that are considered "folklore." An important part of the text is a large number of exercises with detailed hints for their solution. They complement the material in the chapters and contain many important results. The last fivechapters introduce the reader to selected topics in the theory of Banach spaces related to smoothness and topology.This part of the book isintended as an introduction to and a complement ofexisting books on the subject ([Bea], [BeLi], [DGZ3]' [Disl], [Dis2], [Fab], [JoL3], [LiT2], [Phe2]' [Woj]). Some material is presented here for the first time in a monograph form. For further reading in this area, we recommend for instance [Gil], [God4], [Gue], [JoL3], [Kec], [LjSo], [Neg], [MeNe]' [Oxt], [RoJa], [Sem], [Sin3], [TaI2], and [Yael. The text is based on graduate courses taught at the University ofAlberta in Edmonton in the years 1984-1997. These courses were also taken by many senior students in the Honors undergraduate program in Edmonton | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Funktionalanalysis |0 (DE-588)4018916-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Banach-Raum |0 (DE-588)4004402-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktionalanalysis |0 (DE-588)4018916-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Banach-Raum |0 (DE-588)4004402-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Habala, Petr |e Sonstige |4 oth | |
700 | 1 | |a Hájek, Petr |e Sonstige |4 oth | |
700 | 1 | |a Santalucía, Vicente Montesinos |e Sonstige |4 oth | |
700 | 1 | |a Pelant, Jan |e Sonstige |4 oth | |
700 | 1 | |a Zizler, Václav |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3480-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856899 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094742736896 |
---|---|
any_adam_object | |
author | Fabian, Marián |
author_facet | Fabian, Marián |
author_role | aut |
author_sort | Fabian, Marián |
author_variant | m f mf |
building | Verbundindex |
bvnumber | BV042421482 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864063699 (DE-599)BVBBV042421482 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-3480-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03623nmm a2200565zc 4500</leader><controlfield tag="001">BV042421482</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475734805</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3480-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441929129</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-2912-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3480-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864063699</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421482</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fabian, Marián</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Functional Analysis and Infinite-Dimensional Geometry</subfield><subfield code="c">by Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 451 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Canadian Mathematical Society / Société mathématique du Canada</subfield><subfield code="x">1613-5237</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization, and other branches ofmathematics. This book is intended as an introduction to linear functional analysis and to some parts of infinite-dimensional Banach space theory. The first seven chapters are directed mainly to undergraduate and grad uate students. We have strived to make the text easily readable and as self-contained as possible. In particular, we proved many basic facts that are considered "folklore." An important part of the text is a large number of exercises with detailed hints for their solution. They complement the material in the chapters and contain many important results. The last fivechapters introduce the reader to selected topics in the theory of Banach spaces related to smoothness and topology.This part of the book isintended as an introduction to and a complement ofexisting books on the subject ([Bea], [BeLi], [DGZ3]' [Disl], [Dis2], [Fab], [JoL3], [LiT2], [Phe2]' [Woj]). Some material is presented here for the first time in a monograph form. For further reading in this area, we recommend for instance [Gil], [God4], [Gue], [JoL3], [Kec], [LjSo], [Neg], [MeNe]' [Oxt], [RoJa], [Sem], [Sin3], [TaI2], and [Yael. The text is based on graduate courses taught at the University ofAlberta in Edmonton in the years 1984-1997. These courses were also taken by many senior students in the Honors undergraduate program in Edmonton</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Habala, Petr</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hájek, Petr</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Santalucía, Vicente Montesinos</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pelant, Jan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zizler, Václav</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3480-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856899</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421482 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475734805 9781441929129 |
issn | 1613-5237 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856899 |
oclc_num | 864063699 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 451 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer New York |
record_format | marc |
series2 | Canadian Mathematical Society / Société mathématique du Canada |
spelling | Fabian, Marián Verfasser aut Functional Analysis and Infinite-Dimensional Geometry by Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler New York, NY Springer New York 2001 1 Online-Ressource (IX, 451 p) txt rdacontent c rdamedia cr rdacarrier Canadian Mathematical Society / Société mathématique du Canada 1613-5237 Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization, and other branches ofmathematics. This book is intended as an introduction to linear functional analysis and to some parts of infinite-dimensional Banach space theory. The first seven chapters are directed mainly to undergraduate and grad uate students. We have strived to make the text easily readable and as self-contained as possible. In particular, we proved many basic facts that are considered "folklore." An important part of the text is a large number of exercises with detailed hints for their solution. They complement the material in the chapters and contain many important results. The last fivechapters introduce the reader to selected topics in the theory of Banach spaces related to smoothness and topology.This part of the book isintended as an introduction to and a complement ofexisting books on the subject ([Bea], [BeLi], [DGZ3]' [Disl], [Dis2], [Fab], [JoL3], [LiT2], [Phe2]' [Woj]). Some material is presented here for the first time in a monograph form. For further reading in this area, we recommend for instance [Gil], [God4], [Gue], [JoL3], [Kec], [LjSo], [Neg], [MeNe]' [Oxt], [RoJa], [Sem], [Sin3], [TaI2], and [Yael. The text is based on graduate courses taught at the University ofAlberta in Edmonton in the years 1984-1997. These courses were also taken by many senior students in the Honors undergraduate program in Edmonton Mathematics Global analysis (Mathematics) Analysis Mathematik Funktionalanalysis (DE-588)4018916-8 gnd rswk-swf Banach-Raum (DE-588)4004402-6 gnd rswk-swf Funktionalanalysis (DE-588)4018916-8 s 1\p DE-604 Banach-Raum (DE-588)4004402-6 s 2\p DE-604 Habala, Petr Sonstige oth Hájek, Petr Sonstige oth Santalucía, Vicente Montesinos Sonstige oth Pelant, Jan Sonstige oth Zizler, Václav Sonstige oth https://doi.org/10.1007/978-1-4757-3480-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Fabian, Marián Functional Analysis and Infinite-Dimensional Geometry Mathematics Global analysis (Mathematics) Analysis Mathematik Funktionalanalysis (DE-588)4018916-8 gnd Banach-Raum (DE-588)4004402-6 gnd |
subject_GND | (DE-588)4018916-8 (DE-588)4004402-6 |
title | Functional Analysis and Infinite-Dimensional Geometry |
title_auth | Functional Analysis and Infinite-Dimensional Geometry |
title_exact_search | Functional Analysis and Infinite-Dimensional Geometry |
title_full | Functional Analysis and Infinite-Dimensional Geometry by Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler |
title_fullStr | Functional Analysis and Infinite-Dimensional Geometry by Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler |
title_full_unstemmed | Functional Analysis and Infinite-Dimensional Geometry by Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler |
title_short | Functional Analysis and Infinite-Dimensional Geometry |
title_sort | functional analysis and infinite dimensional geometry |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Funktionalanalysis (DE-588)4018916-8 gnd Banach-Raum (DE-588)4004402-6 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Funktionalanalysis Banach-Raum |
url | https://doi.org/10.1007/978-1-4757-3480-5 |
work_keys_str_mv | AT fabianmarian functionalanalysisandinfinitedimensionalgeometry AT habalapetr functionalanalysisandinfinitedimensionalgeometry AT hajekpetr functionalanalysisandinfinitedimensionalgeometry AT santaluciavicentemontesinos functionalanalysisandinfinitedimensionalgeometry AT pelantjan functionalanalysisandinfinitedimensionalgeometry AT zizlervaclav functionalanalysisandinfinitedimensionalgeometry |