Permutation Methods: A Distance Function Approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2001
|
Schriftenreihe: | Springer Series in Statistics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The introduction of permutation tests by R. A. Fisher relaxed the paramet ric structure requirement of a test statistic. For example, the structure of the test statistic is no longer required if the assumption of normality is removed. The between-object distance function of classical test statis tics based on the assumption of normality is squared Euclidean distance. Because squared Euclidean distance is not a metric (i. e. , the triangle in equality is not satisfied), it is not at all surprising that classical tests are severely affected by an extreme measurement of a single object. A major purpose of this book is to take advantage of the relaxation of the struc ture of a statistic allowed by permutation tests. While a variety of distance functions are valid for permutation tests, a natural choice possessing many desirable properties is ordinary (i. e. , non-squared) Euclidean distance. Sim ulation studies show that permutation tests based on ordinary Euclidean distance are exceedingly robust in detecting location shifts of heavy-tailed distributions. These tests depend on a metric distance function and are reasonably powerful for a broad spectrum of univariate and multivariate distributions. Least sum of absolute deviations (LAD) regression linked with a per mutation test based on ordinary Euclidean distance yields a linear model analysis which controls for type I error |
Beschreibung: | 1 Online-Ressource (XV, 353 p) |
ISBN: | 9781475734492 9781475734515 |
ISSN: | 0172-7397 |
DOI: | 10.1007/978-1-4757-3449-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421473 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781475734492 |c Online |9 978-1-4757-3449-2 | ||
020 | |a 9781475734515 |c Print |9 978-1-4757-3451-5 | ||
024 | 7 | |a 10.1007/978-1-4757-3449-2 |2 doi | |
035 | |a (OCoLC)860225730 | ||
035 | |a (DE-599)BVBBV042421473 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Mielke, Paul W. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Permutation Methods |b A Distance Function Approach |c by Paul W. Mielke, Kenneth J. Berry |
264 | 1 | |a New York, NY |b Springer New York |c 2001 | |
300 | |a 1 Online-Ressource (XV, 353 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Statistics |x 0172-7397 | |
500 | |a The introduction of permutation tests by R. A. Fisher relaxed the paramet ric structure requirement of a test statistic. For example, the structure of the test statistic is no longer required if the assumption of normality is removed. The between-object distance function of classical test statis tics based on the assumption of normality is squared Euclidean distance. Because squared Euclidean distance is not a metric (i. e. , the triangle in equality is not satisfied), it is not at all surprising that classical tests are severely affected by an extreme measurement of a single object. A major purpose of this book is to take advantage of the relaxation of the struc ture of a statistic allowed by permutation tests. While a variety of distance functions are valid for permutation tests, a natural choice possessing many desirable properties is ordinary (i. e. , non-squared) Euclidean distance. Sim ulation studies show that permutation tests based on ordinary Euclidean distance are exceedingly robust in detecting location shifts of heavy-tailed distributions. These tests depend on a metric distance function and are reasonably powerful for a broad spectrum of univariate and multivariate distributions. Least sum of absolute deviations (LAD) regression linked with a per mutation test based on ordinary Euclidean distance yields a linear model analysis which controls for type I error | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Mathematical statistics | |
650 | 4 | |a Statistical Theory and Methods | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Resampling |0 (DE-588)4288033-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Randomisierter Test |0 (DE-588)4294178-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Resampling |0 (DE-588)4288033-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Randomisierter Test |0 (DE-588)4294178-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Berry, Kenneth J. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3449-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856890 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094719668224 |
---|---|
any_adam_object | |
author | Mielke, Paul W. |
author_facet | Mielke, Paul W. |
author_role | aut |
author_sort | Mielke, Paul W. |
author_variant | p w m pw pwm |
building | Verbundindex |
bvnumber | BV042421473 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)860225730 (DE-599)BVBBV042421473 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-3449-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03244nmm a2200517zc 4500</leader><controlfield tag="001">BV042421473</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475734492</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3449-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475734515</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4757-3451-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3449-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)860225730</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421473</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mielke, Paul W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Permutation Methods</subfield><subfield code="b">A Distance Function Approach</subfield><subfield code="c">by Paul W. Mielke, Kenneth J. Berry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 353 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Statistics</subfield><subfield code="x">0172-7397</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The introduction of permutation tests by R. A. Fisher relaxed the paramet ric structure requirement of a test statistic. For example, the structure of the test statistic is no longer required if the assumption of normality is removed. The between-object distance function of classical test statis tics based on the assumption of normality is squared Euclidean distance. Because squared Euclidean distance is not a metric (i. e. , the triangle in equality is not satisfied), it is not at all surprising that classical tests are severely affected by an extreme measurement of a single object. A major purpose of this book is to take advantage of the relaxation of the struc ture of a statistic allowed by permutation tests. While a variety of distance functions are valid for permutation tests, a natural choice possessing many desirable properties is ordinary (i. e. , non-squared) Euclidean distance. Sim ulation studies show that permutation tests based on ordinary Euclidean distance are exceedingly robust in detecting location shifts of heavy-tailed distributions. These tests depend on a metric distance function and are reasonably powerful for a broad spectrum of univariate and multivariate distributions. Least sum of absolute deviations (LAD) regression linked with a per mutation test based on ordinary Euclidean distance yields a linear model analysis which controls for type I error</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Theory and Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Resampling</subfield><subfield code="0">(DE-588)4288033-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randomisierter Test</subfield><subfield code="0">(DE-588)4294178-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Resampling</subfield><subfield code="0">(DE-588)4288033-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Randomisierter Test</subfield><subfield code="0">(DE-588)4294178-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berry, Kenneth J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3449-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856890</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421473 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475734492 9781475734515 |
issn | 0172-7397 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856890 |
oclc_num | 860225730 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 353 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Series in Statistics |
spelling | Mielke, Paul W. Verfasser aut Permutation Methods A Distance Function Approach by Paul W. Mielke, Kenneth J. Berry New York, NY Springer New York 2001 1 Online-Ressource (XV, 353 p) txt rdacontent c rdamedia cr rdacarrier Springer Series in Statistics 0172-7397 The introduction of permutation tests by R. A. Fisher relaxed the paramet ric structure requirement of a test statistic. For example, the structure of the test statistic is no longer required if the assumption of normality is removed. The between-object distance function of classical test statis tics based on the assumption of normality is squared Euclidean distance. Because squared Euclidean distance is not a metric (i. e. , the triangle in equality is not satisfied), it is not at all surprising that classical tests are severely affected by an extreme measurement of a single object. A major purpose of this book is to take advantage of the relaxation of the struc ture of a statistic allowed by permutation tests. While a variety of distance functions are valid for permutation tests, a natural choice possessing many desirable properties is ordinary (i. e. , non-squared) Euclidean distance. Sim ulation studies show that permutation tests based on ordinary Euclidean distance are exceedingly robust in detecting location shifts of heavy-tailed distributions. These tests depend on a metric distance function and are reasonably powerful for a broad spectrum of univariate and multivariate distributions. Least sum of absolute deviations (LAD) regression linked with a per mutation test based on ordinary Euclidean distance yields a linear model analysis which controls for type I error Statistics Mathematical statistics Statistical Theory and Methods Statistik Resampling (DE-588)4288033-6 gnd rswk-swf Randomisierter Test (DE-588)4294178-7 gnd rswk-swf Resampling (DE-588)4288033-6 s 1\p DE-604 Randomisierter Test (DE-588)4294178-7 s 2\p DE-604 Berry, Kenneth J. Sonstige oth https://doi.org/10.1007/978-1-4757-3449-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mielke, Paul W. Permutation Methods A Distance Function Approach Statistics Mathematical statistics Statistical Theory and Methods Statistik Resampling (DE-588)4288033-6 gnd Randomisierter Test (DE-588)4294178-7 gnd |
subject_GND | (DE-588)4288033-6 (DE-588)4294178-7 |
title | Permutation Methods A Distance Function Approach |
title_auth | Permutation Methods A Distance Function Approach |
title_exact_search | Permutation Methods A Distance Function Approach |
title_full | Permutation Methods A Distance Function Approach by Paul W. Mielke, Kenneth J. Berry |
title_fullStr | Permutation Methods A Distance Function Approach by Paul W. Mielke, Kenneth J. Berry |
title_full_unstemmed | Permutation Methods A Distance Function Approach by Paul W. Mielke, Kenneth J. Berry |
title_short | Permutation Methods |
title_sort | permutation methods a distance function approach |
title_sub | A Distance Function Approach |
topic | Statistics Mathematical statistics Statistical Theory and Methods Statistik Resampling (DE-588)4288033-6 gnd Randomisierter Test (DE-588)4294178-7 gnd |
topic_facet | Statistics Mathematical statistics Statistical Theory and Methods Statistik Resampling Randomisierter Test |
url | https://doi.org/10.1007/978-1-4757-3449-2 |
work_keys_str_mv | AT mielkepaulw permutationmethodsadistancefunctionapproach AT berrykennethj permutationmethodsadistancefunctionapproach |