Variational Theory of Splines:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2001
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The variational spline theory which originates from the well-known paper by J. e. Holliday ( 1957) is today a well-developed field in approximation theory. The general definition of splines in the Hilbert space , - is tence, uniqueness, and characterization theorems were obtained about 35 years ago by M. Atteia , P. J. Laurent, and P. M. Anselone, but in recent years important new results have been obtained in the abstract variational spline theory |
Beschreibung: | 1 Online-Ressource (XVIII, 280 p) |
ISBN: | 9781475734287 9781441933683 |
DOI: | 10.1007/978-1-4757-3428-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421469 | ||
003 | DE-604 | ||
005 | 20180108 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781475734287 |c Online |9 978-1-4757-3428-7 | ||
020 | |a 9781441933683 |c Print |9 978-1-4419-3368-3 | ||
024 | 7 | |a 10.1007/978-1-4757-3428-7 |2 doi | |
035 | |a (OCoLC)1184503752 | ||
035 | |a (DE-599)BVBBV042421469 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bezhaev, Anatoly Yu |e Verfasser |4 aut | |
245 | 1 | 0 | |a Variational Theory of Splines |c by Anatoly Yu. Bezhaev, Vladimir A. Vasilenko |
264 | 1 | |a Boston, MA |b Springer US |c 2001 | |
300 | |a 1 Online-Ressource (XVIII, 280 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a The variational spline theory which originates from the well-known paper by J. e. Holliday ( 1957) is today a well-developed field in approximation theory. The general definition of splines in the Hilbert space , - is tence, uniqueness, and characterization theorems were obtained about 35 years ago by M. Atteia , P. J. Laurent, and P. M. Anselone, but in recent years important new results have been obtained in the abstract variational spline theory | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Electronic data processing | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Analysis | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Numeric Computing | |
650 | 4 | |a Approximations and Expansions | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Spline |0 (DE-588)4182391-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Variationsrechnung |0 (DE-588)4062355-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spline |0 (DE-588)4182391-6 |D s |
689 | 0 | 1 | |a Variationsrechnung |0 (DE-588)4062355-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Vasilenko, Vladimir A. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3428-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856886 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094737494016 |
---|---|
any_adam_object | |
author | Bezhaev, Anatoly Yu |
author_facet | Bezhaev, Anatoly Yu |
author_role | aut |
author_sort | Bezhaev, Anatoly Yu |
author_variant | a y b ay ayb |
building | Verbundindex |
bvnumber | BV042421469 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184503752 (DE-599)BVBBV042421469 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-3428-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02432nmm a2200577zc 4500</leader><controlfield tag="001">BV042421469</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180108 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475734287</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3428-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441933683</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-3368-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3428-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184503752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421469</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bezhaev, Anatoly Yu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Variational Theory of Splines</subfield><subfield code="c">by Anatoly Yu. Bezhaev, Vladimir A. Vasilenko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 280 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The variational spline theory which originates from the well-known paper by J. e. Holliday ( 1957) is today a well-developed field in approximation theory. The general definition of splines in the Hilbert space , - is tence, uniqueness, and characterization theorems were obtained about 35 years ago by M. Atteia , P. J. Laurent, and P. M. Anselone, but in recent years important new results have been obtained in the abstract variational spline theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numeric Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximations and Expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spline</subfield><subfield code="0">(DE-588)4182391-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spline</subfield><subfield code="0">(DE-588)4182391-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vasilenko, Vladimir A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3428-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856886</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421469 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475734287 9781441933683 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856886 |
oclc_num | 1184503752 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 280 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer US |
record_format | marc |
spelling | Bezhaev, Anatoly Yu Verfasser aut Variational Theory of Splines by Anatoly Yu. Bezhaev, Vladimir A. Vasilenko Boston, MA Springer US 2001 1 Online-Ressource (XVIII, 280 p) txt rdacontent c rdamedia cr rdacarrier The variational spline theory which originates from the well-known paper by J. e. Holliday ( 1957) is today a well-developed field in approximation theory. The general definition of splines in the Hilbert space , - is tence, uniqueness, and characterization theorems were obtained about 35 years ago by M. Atteia , P. J. Laurent, and P. M. Anselone, but in recent years important new results have been obtained in the abstract variational spline theory Mathematics Electronic data processing Global analysis (Mathematics) Functional analysis Mathematical optimization Analysis Functional Analysis Numeric Computing Approximations and Expansions Calculus of Variations and Optimal Control; Optimization Datenverarbeitung Mathematik Spline (DE-588)4182391-6 gnd rswk-swf Variationsrechnung (DE-588)4062355-5 gnd rswk-swf Spline (DE-588)4182391-6 s Variationsrechnung (DE-588)4062355-5 s 1\p DE-604 Vasilenko, Vladimir A. Sonstige oth https://doi.org/10.1007/978-1-4757-3428-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bezhaev, Anatoly Yu Variational Theory of Splines Mathematics Electronic data processing Global analysis (Mathematics) Functional analysis Mathematical optimization Analysis Functional Analysis Numeric Computing Approximations and Expansions Calculus of Variations and Optimal Control; Optimization Datenverarbeitung Mathematik Spline (DE-588)4182391-6 gnd Variationsrechnung (DE-588)4062355-5 gnd |
subject_GND | (DE-588)4182391-6 (DE-588)4062355-5 |
title | Variational Theory of Splines |
title_auth | Variational Theory of Splines |
title_exact_search | Variational Theory of Splines |
title_full | Variational Theory of Splines by Anatoly Yu. Bezhaev, Vladimir A. Vasilenko |
title_fullStr | Variational Theory of Splines by Anatoly Yu. Bezhaev, Vladimir A. Vasilenko |
title_full_unstemmed | Variational Theory of Splines by Anatoly Yu. Bezhaev, Vladimir A. Vasilenko |
title_short | Variational Theory of Splines |
title_sort | variational theory of splines |
topic | Mathematics Electronic data processing Global analysis (Mathematics) Functional analysis Mathematical optimization Analysis Functional Analysis Numeric Computing Approximations and Expansions Calculus of Variations and Optimal Control; Optimization Datenverarbeitung Mathematik Spline (DE-588)4182391-6 gnd Variationsrechnung (DE-588)4062355-5 gnd |
topic_facet | Mathematics Electronic data processing Global analysis (Mathematics) Functional analysis Mathematical optimization Analysis Functional Analysis Numeric Computing Approximations and Expansions Calculus of Variations and Optimal Control; Optimization Datenverarbeitung Mathematik Spline Variationsrechnung |
url | https://doi.org/10.1007/978-1-4757-3428-7 |
work_keys_str_mv | AT bezhaevanatolyyu variationaltheoryofsplines AT vasilenkovladimira variationaltheoryofsplines |