Resampling Methods: A Practical Guide to Data Analysis
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2001
|
Ausgabe: | Second Edition |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | "Most introductory statistics books ignore or give little attention to resampling methods, and thus another generation learns the less than optimal methods of statistical analysis. Good attempts to remedy this situation by writing an introductory text that focuses on resampling methods, and he does it well." — Ron C. Fryxell, Albion College "...The wealth of the bibliography covers a wide range of disciplines." ---Dr. Dimitris Karlis, Athens University of Economics This thoroughly revised second edition is a practical guide to data analysis using the bootstrap, cross-validation, and permutation tests. It is an essential resource for industrial statisticians, statistical consultants, and research professionals in science, engineering, and technology. Only requiring minimal mathematics beyond algebra, it provides a table-free introduction to data analysis utilizing numerous exercises, practical data sets, and freely available statistical shareware. Topics and Features: * Offers more practical examples plus an additional chapter dedicated to regression and data mining techniques and their limitations * Uses resampling approach to introduction statistics * A practical presentation that covers all three sampling methods: bootstrap, density-estimation, and permutations * Includes systematic guide to help one select the correct procedure for a particular application * Detailed coverage of all three statistical methodologies: classification, estimation, and hypothesis testing * Suitable for classroom use and individual, self-study purposes * Numerous practical examples using popular computer programs such as SAS, Stata, and StatXact * Useful appendixes with computer programs and code to develop individualized methods * Downloadable freeware from author’s website: http://users.oco.net/drphilgood/resamp.htm With its accessible style and intuitive topic development, the book is an excellent basic resource for the power, simplicity, and versatility of the bootstrap, cross-validation, and permutation tests. Students, professionals, and researchers will find it a prarticularly useful handbook for modern resampling methods and their applications |
Beschreibung: | 1 Online-Ressource (XII, 238 p) |
ISBN: | 9781475734256 9781475734270 |
DOI: | 10.1007/978-1-4757-3425-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421468 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781475734256 |c Online |9 978-1-4757-3425-6 | ||
020 | |a 9781475734270 |c Print |9 978-1-4757-3427-0 | ||
024 | 7 | |a 10.1007/978-1-4757-3425-6 |2 doi | |
035 | |a (OCoLC)864005776 | ||
035 | |a (DE-599)BVBBV042421468 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Good, Phillip I. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Resampling Methods |b A Practical Guide to Data Analysis |c by Phillip I. Good |
250 | |a Second Edition | ||
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2001 | |
300 | |a 1 Online-Ressource (XII, 238 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a "Most introductory statistics books ignore or give little attention to resampling methods, and thus another generation learns the less than optimal methods of statistical analysis. Good attempts to remedy this situation by writing an introductory text that focuses on resampling methods, and he does it well." — Ron C. Fryxell, Albion College "...The wealth of the bibliography covers a wide range of disciplines." ---Dr. Dimitris Karlis, Athens University of Economics This thoroughly revised second edition is a practical guide to data analysis using the bootstrap, cross-validation, and permutation tests. It is an essential resource for industrial statisticians, statistical consultants, and research professionals in science, engineering, and technology. Only requiring minimal mathematics beyond algebra, it provides a table-free introduction to data analysis utilizing numerous exercises, practical data sets, and freely available statistical shareware. | ||
500 | |a Topics and Features: * Offers more practical examples plus an additional chapter dedicated to regression and data mining techniques and their limitations * Uses resampling approach to introduction statistics * A practical presentation that covers all three sampling methods: bootstrap, density-estimation, and permutations * Includes systematic guide to help one select the correct procedure for a particular application * Detailed coverage of all three statistical methodologies: classification, estimation, and hypothesis testing * Suitable for classroom use and individual, self-study purposes * Numerous practical examples using popular computer programs such as SAS, Stata, and StatXact * Useful appendixes with computer programs and code to develop individualized methods * Downloadable freeware from author’s website: http://users.oco.net/drphilgood/resamp.htm With its accessible style and intuitive topic development, the book is an excellent basic resource for the power, | ||
500 | |a simplicity, and versatility of the bootstrap, cross-validation, and permutation tests. Students, professionals, and researchers will find it a prarticularly useful handbook for modern resampling methods and their applications | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Mathematical statistics | |
650 | 4 | |a Statistical Theory and Methods | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Resampling |0 (DE-588)4288033-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Resampling |0 (DE-588)4288033-6 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3425-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856885 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094732251136 |
---|---|
any_adam_object | |
author | Good, Phillip I. |
author_facet | Good, Phillip I. |
author_role | aut |
author_sort | Good, Phillip I. |
author_variant | p i g pi pig |
building | Verbundindex |
bvnumber | BV042421468 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864005776 (DE-599)BVBBV042421468 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-3425-6 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03867nmm a2200505zc 4500</leader><controlfield tag="001">BV042421468</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475734256</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3425-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475734270</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4757-3427-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3425-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864005776</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421468</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Good, Phillip I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Resampling Methods</subfield><subfield code="b">A Practical Guide to Data Analysis</subfield><subfield code="c">by Phillip I. Good</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 238 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Most introductory statistics books ignore or give little attention to resampling methods, and thus another generation learns the less than optimal methods of statistical analysis. Good attempts to remedy this situation by writing an introductory text that focuses on resampling methods, and he does it well." — Ron C. Fryxell, Albion College "...The wealth of the bibliography covers a wide range of disciplines." ---Dr. Dimitris Karlis, Athens University of Economics This thoroughly revised second edition is a practical guide to data analysis using the bootstrap, cross-validation, and permutation tests. It is an essential resource for industrial statisticians, statistical consultants, and research professionals in science, engineering, and technology. Only requiring minimal mathematics beyond algebra, it provides a table-free introduction to data analysis utilizing numerous exercises, practical data sets, and freely available statistical shareware. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Topics and Features: * Offers more practical examples plus an additional chapter dedicated to regression and data mining techniques and their limitations * Uses resampling approach to introduction statistics * A practical presentation that covers all three sampling methods: bootstrap, density-estimation, and permutations * Includes systematic guide to help one select the correct procedure for a particular application * Detailed coverage of all three statistical methodologies: classification, estimation, and hypothesis testing * Suitable for classroom use and individual, self-study purposes * Numerous practical examples using popular computer programs such as SAS, Stata, and StatXact * Useful appendixes with computer programs and code to develop individualized methods * Downloadable freeware from author’s website: http://users.oco.net/drphilgood/resamp.htm With its accessible style and intuitive topic development, the book is an excellent basic resource for the power, </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">simplicity, and versatility of the bootstrap, cross-validation, and permutation tests. Students, professionals, and researchers will find it a prarticularly useful handbook for modern resampling methods and their applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Theory and Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Resampling</subfield><subfield code="0">(DE-588)4288033-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Resampling</subfield><subfield code="0">(DE-588)4288033-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3425-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856885</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV042421468 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475734256 9781475734270 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856885 |
oclc_num | 864005776 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 238 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Good, Phillip I. Verfasser aut Resampling Methods A Practical Guide to Data Analysis by Phillip I. Good Second Edition Boston, MA Birkhäuser Boston 2001 1 Online-Ressource (XII, 238 p) txt rdacontent c rdamedia cr rdacarrier "Most introductory statistics books ignore or give little attention to resampling methods, and thus another generation learns the less than optimal methods of statistical analysis. Good attempts to remedy this situation by writing an introductory text that focuses on resampling methods, and he does it well." — Ron C. Fryxell, Albion College "...The wealth of the bibliography covers a wide range of disciplines." ---Dr. Dimitris Karlis, Athens University of Economics This thoroughly revised second edition is a practical guide to data analysis using the bootstrap, cross-validation, and permutation tests. It is an essential resource for industrial statisticians, statistical consultants, and research professionals in science, engineering, and technology. Only requiring minimal mathematics beyond algebra, it provides a table-free introduction to data analysis utilizing numerous exercises, practical data sets, and freely available statistical shareware. Topics and Features: * Offers more practical examples plus an additional chapter dedicated to regression and data mining techniques and their limitations * Uses resampling approach to introduction statistics * A practical presentation that covers all three sampling methods: bootstrap, density-estimation, and permutations * Includes systematic guide to help one select the correct procedure for a particular application * Detailed coverage of all three statistical methodologies: classification, estimation, and hypothesis testing * Suitable for classroom use and individual, self-study purposes * Numerous practical examples using popular computer programs such as SAS, Stata, and StatXact * Useful appendixes with computer programs and code to develop individualized methods * Downloadable freeware from author’s website: http://users.oco.net/drphilgood/resamp.htm With its accessible style and intuitive topic development, the book is an excellent basic resource for the power, simplicity, and versatility of the bootstrap, cross-validation, and permutation tests. Students, professionals, and researchers will find it a prarticularly useful handbook for modern resampling methods and their applications Statistics Mathematical statistics Statistical Theory and Methods Statistik Resampling (DE-588)4288033-6 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Resampling (DE-588)4288033-6 s 2\p DE-604 https://doi.org/10.1007/978-1-4757-3425-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Good, Phillip I. Resampling Methods A Practical Guide to Data Analysis Statistics Mathematical statistics Statistical Theory and Methods Statistik Resampling (DE-588)4288033-6 gnd |
subject_GND | (DE-588)4288033-6 (DE-588)4151278-9 |
title | Resampling Methods A Practical Guide to Data Analysis |
title_auth | Resampling Methods A Practical Guide to Data Analysis |
title_exact_search | Resampling Methods A Practical Guide to Data Analysis |
title_full | Resampling Methods A Practical Guide to Data Analysis by Phillip I. Good |
title_fullStr | Resampling Methods A Practical Guide to Data Analysis by Phillip I. Good |
title_full_unstemmed | Resampling Methods A Practical Guide to Data Analysis by Phillip I. Good |
title_short | Resampling Methods |
title_sort | resampling methods a practical guide to data analysis |
title_sub | A Practical Guide to Data Analysis |
topic | Statistics Mathematical statistics Statistical Theory and Methods Statistik Resampling (DE-588)4288033-6 gnd |
topic_facet | Statistics Mathematical statistics Statistical Theory and Methods Statistik Resampling Einführung |
url | https://doi.org/10.1007/978-1-4757-3425-6 |
work_keys_str_mv | AT goodphillipi resamplingmethodsapracticalguidetodataanalysis |