Probability with Statistical Applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2001
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is intended as a one-semester first course in probability and statistics, requiring only a knowledge of calculus. It will be useful for students majoring in a number of disciplines: for example, biology, computer science, electrical engineering, mathematics, and physics. Many good texts in probability and statistics are intended for a one-year course and consist of a large number of topics. In this book, the number of topics is drastically reduced. We concentrate instead on several important concepts that every student should understand and be able to apply in an interesting and useful way. Thus statistics is introduced at an early stage. The presentation focuses on topics in probability and statistics and tries to minimize the difficulties students often have with calculus. Theory therefore is kept to a minimum and interesting examples are provided throughout. Chapter I contains the basic rules of probability and conditional probability with some interesting applications such as Bayes' rule and the birthday problem. In Chapter 2 discrete and continuous random variables, expectation and variance are introduced. This chapter is mostly computational with a few probability concepts and many applications of calculus. In Chapters 3 and 4 we get to the heart of the subject: binomial distribution, normal approximation of the binomial, Poisson distribution, the Law of Large Numbers and the Central Limit Theorem. We also cover the Poisson approximation of the binomial (in a nonstandard way) and the Poisson scattering theorem |
Beschreibung: | 1 Online-Ressource (XIII, 219 p) |
ISBN: | 9781475734218 9780817642471 |
DOI: | 10.1007/978-1-4757-3421-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421467 | ||
003 | DE-604 | ||
005 | 20171219 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781475734218 |c Online |9 978-1-4757-3421-8 | ||
020 | |a 9780817642471 |c Print |9 978-0-8176-4247-1 | ||
024 | 7 | |a 10.1007/978-1-4757-3421-8 |2 doi | |
035 | |a (OCoLC)1184505569 | ||
035 | |a (DE-599)BVBBV042421467 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Schinazi, Rinaldo B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Probability with Statistical Applications |c by Rinaldo B. Schinazi |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2001 | |
300 | |a 1 Online-Ressource (XIII, 219 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a This book is intended as a one-semester first course in probability and statistics, requiring only a knowledge of calculus. It will be useful for students majoring in a number of disciplines: for example, biology, computer science, electrical engineering, mathematics, and physics. Many good texts in probability and statistics are intended for a one-year course and consist of a large number of topics. In this book, the number of topics is drastically reduced. We concentrate instead on several important concepts that every student should understand and be able to apply in an interesting and useful way. Thus statistics is introduced at an early stage. The presentation focuses on topics in probability and statistics and tries to minimize the difficulties students often have with calculus. Theory therefore is kept to a minimum and interesting examples are provided throughout. Chapter I contains the basic rules of probability and conditional probability with some interesting applications such as Bayes' rule and the birthday problem. In Chapter 2 discrete and continuous random variables, expectation and variance are introduced. This chapter is mostly computational with a few probability concepts and many applications of calculus. In Chapters 3 and 4 we get to the heart of the subject: binomial distribution, normal approximation of the binomial, Poisson distribution, the Law of Large Numbers and the Central Limit Theorem. We also cover the Poisson approximation of the binomial (in a nonstandard way) and the Poisson scattering theorem | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematical statistics | |
650 | 4 | |a Statistical Theory and Methods | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4143389-0 |a Aufgabensammlung |2 gnd-content | |
689 | 0 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 0 | 1 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3421-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856884 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094739591168 |
---|---|
any_adam_object | |
author | Schinazi, Rinaldo B. |
author_facet | Schinazi, Rinaldo B. |
author_role | aut |
author_sort | Schinazi, Rinaldo B. |
author_variant | r b s rb rbs |
building | Verbundindex |
bvnumber | BV042421467 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184505569 (DE-599)BVBBV042421467 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-3421-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03573nmm a2200553zc 4500</leader><controlfield tag="001">BV042421467</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171219 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475734218</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3421-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817642471</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-4247-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3421-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184505569</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421467</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schinazi, Rinaldo B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probability with Statistical Applications</subfield><subfield code="c">by Rinaldo B. Schinazi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 219 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is intended as a one-semester first course in probability and statistics, requiring only a knowledge of calculus. It will be useful for students majoring in a number of disciplines: for example, biology, computer science, electrical engineering, mathematics, and physics. Many good texts in probability and statistics are intended for a one-year course and consist of a large number of topics. In this book, the number of topics is drastically reduced. We concentrate instead on several important concepts that every student should understand and be able to apply in an interesting and useful way. Thus statistics is introduced at an early stage. The presentation focuses on topics in probability and statistics and tries to minimize the difficulties students often have with calculus. Theory therefore is kept to a minimum and interesting examples are provided throughout. Chapter I contains the basic rules of probability and conditional probability with some interesting applications such as Bayes' rule and the birthday problem. In Chapter 2 discrete and continuous random variables, expectation and variance are introduced. This chapter is mostly computational with a few probability concepts and many applications of calculus. In Chapters 3 and 4 we get to the heart of the subject: binomial distribution, normal approximation of the binomial, Poisson distribution, the Law of Large Numbers and the Central Limit Theorem. We also cover the Poisson approximation of the binomial (in a nonstandard way) and the Poisson scattering theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Theory and Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4143389-0</subfield><subfield code="a">Aufgabensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3421-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856884</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4143389-0 Aufgabensammlung gnd-content |
genre_facet | Einführung Aufgabensammlung |
id | DE-604.BV042421467 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475734218 9780817642471 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856884 |
oclc_num | 1184505569 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 219 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Schinazi, Rinaldo B. Verfasser aut Probability with Statistical Applications by Rinaldo B. Schinazi Boston, MA Birkhäuser Boston 2001 1 Online-Ressource (XIII, 219 p) txt rdacontent c rdamedia cr rdacarrier This book is intended as a one-semester first course in probability and statistics, requiring only a knowledge of calculus. It will be useful for students majoring in a number of disciplines: for example, biology, computer science, electrical engineering, mathematics, and physics. Many good texts in probability and statistics are intended for a one-year course and consist of a large number of topics. In this book, the number of topics is drastically reduced. We concentrate instead on several important concepts that every student should understand and be able to apply in an interesting and useful way. Thus statistics is introduced at an early stage. The presentation focuses on topics in probability and statistics and tries to minimize the difficulties students often have with calculus. Theory therefore is kept to a minimum and interesting examples are provided throughout. Chapter I contains the basic rules of probability and conditional probability with some interesting applications such as Bayes' rule and the birthday problem. In Chapter 2 discrete and continuous random variables, expectation and variance are introduced. This chapter is mostly computational with a few probability concepts and many applications of calculus. In Chapters 3 and 4 we get to the heart of the subject: binomial distribution, normal approximation of the binomial, Poisson distribution, the Law of Large Numbers and the Central Limit Theorem. We also cover the Poisson approximation of the binomial (in a nonstandard way) and the Poisson scattering theorem Statistics Mathematics Mathematical statistics Statistical Theory and Methods Applications of Mathematics Mathematik Statistik Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4143389-0 Aufgabensammlung gnd-content Wahrscheinlichkeitstheorie (DE-588)4079013-7 s Statistik (DE-588)4056995-0 s 3\p DE-604 https://doi.org/10.1007/978-1-4757-3421-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schinazi, Rinaldo B. Probability with Statistical Applications Statistics Mathematics Mathematical statistics Statistical Theory and Methods Applications of Mathematics Mathematik Statistik Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd Statistik (DE-588)4056995-0 gnd |
subject_GND | (DE-588)4079013-7 (DE-588)4056995-0 (DE-588)4151278-9 (DE-588)4143389-0 |
title | Probability with Statistical Applications |
title_auth | Probability with Statistical Applications |
title_exact_search | Probability with Statistical Applications |
title_full | Probability with Statistical Applications by Rinaldo B. Schinazi |
title_fullStr | Probability with Statistical Applications by Rinaldo B. Schinazi |
title_full_unstemmed | Probability with Statistical Applications by Rinaldo B. Schinazi |
title_short | Probability with Statistical Applications |
title_sort | probability with statistical applications |
topic | Statistics Mathematics Mathematical statistics Statistical Theory and Methods Applications of Mathematics Mathematik Statistik Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd Statistik (DE-588)4056995-0 gnd |
topic_facet | Statistics Mathematics Mathematical statistics Statistical Theory and Methods Applications of Mathematics Mathematik Statistik Wahrscheinlichkeitstheorie Einführung Aufgabensammlung |
url | https://doi.org/10.1007/978-1-4757-3421-8 |
work_keys_str_mv | AT schinazirinaldob probabilitywithstatisticalapplications |