Elements of Operator Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2001
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | {\it Elements of Operatory Theory} is aimed at graduate students as well as a new generation of mathematicians and scientists who need to apply operator theory to their field. Written in a user-friendly, motivating style, fundamental topics are presented in a systematic fashion, i.e., set theory, algebraic structures, topological structures, Banach spaces, Hilbert spaces, culminating with the Spectral Theorem, one of the landmarks in the theory of operators on Hilbert spaces. The exposition is concept-driven and as much as possible avoids the formula-computational approach. Key features of this largely self-contained work include: * required background material to each chapter * fully rigorous proofs, over 300 of them, are specially tailored to the presentation and some are new * more than 100 examples and, in several cases, interesting counterexamples that demonstrate the frontiers of an important theorem * over 300 problems, many with hints * both problems and examples underscore further auxiliary results and extensions of the main theory; in this non-traditional framework, the reader is challenged and has a chance to prove the principal theorems anew This work is an excellent text for the classroom as well as a self-study resource for researchers. Prerequisites include an introduction to analysis and to functions of a complex variable, which most first-year graduate students in mathematics, engineering, or another formal science have already acquired. Measure theory and integration theory are required only for the last section of the final chapter |
Beschreibung: | 1 Online-Ressource (XIII, 527 p) |
ISBN: | 9781475733280 9781475733303 |
DOI: | 10.1007/978-1-4757-3328-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421457 | ||
003 | DE-604 | ||
005 | 20160304 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781475733280 |c Online |9 978-1-4757-3328-0 | ||
020 | |a 9781475733303 |c Print |9 978-1-4757-3330-3 | ||
024 | 7 | |a 10.1007/978-1-4757-3328-0 |2 doi | |
035 | |a (OCoLC)863945074 | ||
035 | |a (DE-599)BVBBV042421457 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.724 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kubrusly, Carlos S. |d 1947- |e Verfasser |0 (DE-588)173093426 |4 aut | |
245 | 1 | 0 | |a Elements of Operator Theory |c by Carlos S. Kubrusly |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2001 | |
300 | |a 1 Online-Ressource (XIII, 527 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a {\it Elements of Operatory Theory} is aimed at graduate students as well as a new generation of mathematicians and scientists who need to apply operator theory to their field. Written in a user-friendly, motivating style, fundamental topics are presented in a systematic fashion, i.e., set theory, algebraic structures, topological structures, Banach spaces, Hilbert spaces, culminating with the Spectral Theorem, one of the landmarks in the theory of operators on Hilbert spaces. The exposition is concept-driven and as much as possible avoids the formula-computational approach. Key features of this largely self-contained work include: * required background material to each chapter * fully rigorous proofs, over 300 of them, are specially tailored to the presentation and some are new * more than 100 examples and, in several cases, interesting counterexamples that demonstrate the frontiers of an important theorem * over 300 problems, many with hints * both problems and examples underscore further auxiliary results and extensions of the main theory; in this non-traditional framework, the reader is challenged and has a chance to prove the principal theorems anew This work is an excellent text for the classroom as well as a self-study resource for researchers. Prerequisites include an introduction to analysis and to functions of a complex variable, which most first-year graduate students in mathematics, engineering, or another formal science have already acquired. Measure theory and integration theory are required only for the last section of the final chapter | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Operatortheorie |0 (DE-588)4075665-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Operatortheorie |0 (DE-588)4075665-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3328-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856874 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094715473920 |
---|---|
any_adam_object | |
author | Kubrusly, Carlos S. 1947- |
author_GND | (DE-588)173093426 |
author_facet | Kubrusly, Carlos S. 1947- |
author_role | aut |
author_sort | Kubrusly, Carlos S. 1947- |
author_variant | c s k cs csk |
building | Verbundindex |
bvnumber | BV042421457 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863945074 (DE-599)BVBBV042421457 |
dewey-full | 515.724 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.724 |
dewey-search | 515.724 |
dewey-sort | 3515.724 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-3328-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03168nmm a2200481zc 4500</leader><controlfield tag="001">BV042421457</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160304 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475733280</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3328-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475733303</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4757-3330-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3328-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863945074</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421457</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.724</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kubrusly, Carlos S.</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)173093426</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elements of Operator Theory</subfield><subfield code="c">by Carlos S. Kubrusly</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 527 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">{\it Elements of Operatory Theory} is aimed at graduate students as well as a new generation of mathematicians and scientists who need to apply operator theory to their field. Written in a user-friendly, motivating style, fundamental topics are presented in a systematic fashion, i.e., set theory, algebraic structures, topological structures, Banach spaces, Hilbert spaces, culminating with the Spectral Theorem, one of the landmarks in the theory of operators on Hilbert spaces. The exposition is concept-driven and as much as possible avoids the formula-computational approach. Key features of this largely self-contained work include: * required background material to each chapter * fully rigorous proofs, over 300 of them, are specially tailored to the presentation and some are new * more than 100 examples and, in several cases, interesting counterexamples that demonstrate the frontiers of an important theorem * over 300 problems, many with hints * both problems and examples underscore further auxiliary results and extensions of the main theory; in this non-traditional framework, the reader is challenged and has a chance to prove the principal theorems anew This work is an excellent text for the classroom as well as a self-study resource for researchers. Prerequisites include an introduction to analysis and to functions of a complex variable, which most first-year graduate students in mathematics, engineering, or another formal science have already acquired. Measure theory and integration theory are required only for the last section of the final chapter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3328-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856874</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421457 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475733280 9781475733303 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856874 |
oclc_num | 863945074 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 527 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Kubrusly, Carlos S. 1947- Verfasser (DE-588)173093426 aut Elements of Operator Theory by Carlos S. Kubrusly Boston, MA Birkhäuser Boston 2001 1 Online-Ressource (XIII, 527 p) txt rdacontent c rdamedia cr rdacarrier {\it Elements of Operatory Theory} is aimed at graduate students as well as a new generation of mathematicians and scientists who need to apply operator theory to their field. Written in a user-friendly, motivating style, fundamental topics are presented in a systematic fashion, i.e., set theory, algebraic structures, topological structures, Banach spaces, Hilbert spaces, culminating with the Spectral Theorem, one of the landmarks in the theory of operators on Hilbert spaces. The exposition is concept-driven and as much as possible avoids the formula-computational approach. Key features of this largely self-contained work include: * required background material to each chapter * fully rigorous proofs, over 300 of them, are specially tailored to the presentation and some are new * more than 100 examples and, in several cases, interesting counterexamples that demonstrate the frontiers of an important theorem * over 300 problems, many with hints * both problems and examples underscore further auxiliary results and extensions of the main theory; in this non-traditional framework, the reader is challenged and has a chance to prove the principal theorems anew This work is an excellent text for the classroom as well as a self-study resource for researchers. Prerequisites include an introduction to analysis and to functions of a complex variable, which most first-year graduate students in mathematics, engineering, or another formal science have already acquired. Measure theory and integration theory are required only for the last section of the final chapter Mathematics Functional analysis Operator theory Operator Theory Functional Analysis Applications of Mathematics Mathematik Operatortheorie (DE-588)4075665-8 gnd rswk-swf Operatortheorie (DE-588)4075665-8 s 1\p DE-604 https://doi.org/10.1007/978-1-4757-3328-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kubrusly, Carlos S. 1947- Elements of Operator Theory Mathematics Functional analysis Operator theory Operator Theory Functional Analysis Applications of Mathematics Mathematik Operatortheorie (DE-588)4075665-8 gnd |
subject_GND | (DE-588)4075665-8 |
title | Elements of Operator Theory |
title_auth | Elements of Operator Theory |
title_exact_search | Elements of Operator Theory |
title_full | Elements of Operator Theory by Carlos S. Kubrusly |
title_fullStr | Elements of Operator Theory by Carlos S. Kubrusly |
title_full_unstemmed | Elements of Operator Theory by Carlos S. Kubrusly |
title_short | Elements of Operator Theory |
title_sort | elements of operator theory |
topic | Mathematics Functional analysis Operator theory Operator Theory Functional Analysis Applications of Mathematics Mathematik Operatortheorie (DE-588)4075665-8 gnd |
topic_facet | Mathematics Functional analysis Operator theory Operator Theory Functional Analysis Applications of Mathematics Mathematik Operatortheorie |
url | https://doi.org/10.1007/978-1-4757-3328-0 |
work_keys_str_mv | AT kubruslycarloss elementsofoperatortheory |