Special Classes of Semigroups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2001
|
Schriftenreihe: | Advances in Mathematics
1 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In semigroup theory there are certain kinds of band decompositions, which are very useful in the study of the structure semigroups. There are a number of special semigroup classes in which these decompositions can be used very successfully. The book focuses attention on such classes of semigroups. Some of them are partially discussed in earlier books, but in the last thirty years new semigroup classes have appeared and a fairly large body of material has been published on them. The book provides a systematic review on this subject. The first chapter is an introduction. The remaining chapters are devoted to special semigroup classes. These are Putcha semigroups, commutative semigroups, weakly commutative semigroups, R-Commutative semigroups, conditionally commutative semigroups, RC-commutative semigroups, quasi commutative semigroups, medial semigroups, right commutative semigroups, externally commutative semigroups, E-m semigroups, WE-m semigroups, weakly exponential semigroups, (m,n)-commutative semigroups and n(2)-permutable semigroups. Audience: Students and researchers working in algebra and computer science |
Beschreibung: | 1 Online-Ressource (VIII, 269 p) |
ISBN: | 9781475733167 9781441948533 |
DOI: | 10.1007/978-1-4757-3316-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421456 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781475733167 |c Online |9 978-1-4757-3316-7 | ||
020 | |a 9781441948533 |c Print |9 978-1-4419-4853-3 | ||
024 | 7 | |a 10.1007/978-1-4757-3316-7 |2 doi | |
035 | |a (OCoLC)858017298 | ||
035 | |a (DE-599)BVBBV042421456 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Nagy, Attila |e Verfasser |4 aut | |
245 | 1 | 0 | |a Special Classes of Semigroups |c by Attila Nagy |
264 | 1 | |a Boston, MA |b Springer US |c 2001 | |
300 | |a 1 Online-Ressource (VIII, 269 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advances in Mathematics |v 1 | |
500 | |a In semigroup theory there are certain kinds of band decompositions, which are very useful in the study of the structure semigroups. There are a number of special semigroup classes in which these decompositions can be used very successfully. The book focuses attention on such classes of semigroups. Some of them are partially discussed in earlier books, but in the last thirty years new semigroup classes have appeared and a fairly large body of material has been published on them. The book provides a systematic review on this subject. The first chapter is an introduction. The remaining chapters are devoted to special semigroup classes. These are Putcha semigroups, commutative semigroups, weakly commutative semigroups, R-Commutative semigroups, conditionally commutative semigroups, RC-commutative semigroups, quasi commutative semigroups, medial semigroups, right commutative semigroups, externally commutative semigroups, E-m semigroups, WE-m semigroups, weakly exponential semigroups, (m,n)-commutative semigroups and n(2)-permutable semigroups. Audience: Students and researchers working in algebra and computer science | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3316-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856873 |
Datensatz im Suchindex
_version_ | 1804153094723862528 |
---|---|
any_adam_object | |
author | Nagy, Attila |
author_facet | Nagy, Attila |
author_role | aut |
author_sort | Nagy, Attila |
author_variant | a n an |
building | Verbundindex |
bvnumber | BV042421456 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)858017298 (DE-599)BVBBV042421456 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-3316-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02418nmm a2200421zcb4500</leader><controlfield tag="001">BV042421456</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475733167</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3316-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441948533</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-4853-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3316-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)858017298</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421456</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nagy, Attila</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Special Classes of Semigroups</subfield><subfield code="c">by Attila Nagy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 269 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in Mathematics</subfield><subfield code="v">1</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In semigroup theory there are certain kinds of band decompositions, which are very useful in the study of the structure semigroups. There are a number of special semigroup classes in which these decompositions can be used very successfully. The book focuses attention on such classes of semigroups. Some of them are partially discussed in earlier books, but in the last thirty years new semigroup classes have appeared and a fairly large body of material has been published on them. The book provides a systematic review on this subject. The first chapter is an introduction. The remaining chapters are devoted to special semigroup classes. These are Putcha semigroups, commutative semigroups, weakly commutative semigroups, R-Commutative semigroups, conditionally commutative semigroups, RC-commutative semigroups, quasi commutative semigroups, medial semigroups, right commutative semigroups, externally commutative semigroups, E-m semigroups, WE-m semigroups, weakly exponential semigroups, (m,n)-commutative semigroups and n(2)-permutable semigroups. Audience: Students and researchers working in algebra and computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3316-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856873</subfield></datafield></record></collection> |
id | DE-604.BV042421456 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475733167 9781441948533 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856873 |
oclc_num | 858017298 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 269 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer US |
record_format | marc |
series2 | Advances in Mathematics |
spelling | Nagy, Attila Verfasser aut Special Classes of Semigroups by Attila Nagy Boston, MA Springer US 2001 1 Online-Ressource (VIII, 269 p) txt rdacontent c rdamedia cr rdacarrier Advances in Mathematics 1 In semigroup theory there are certain kinds of band decompositions, which are very useful in the study of the structure semigroups. There are a number of special semigroup classes in which these decompositions can be used very successfully. The book focuses attention on such classes of semigroups. Some of them are partially discussed in earlier books, but in the last thirty years new semigroup classes have appeared and a fairly large body of material has been published on them. The book provides a systematic review on this subject. The first chapter is an introduction. The remaining chapters are devoted to special semigroup classes. These are Putcha semigroups, commutative semigroups, weakly commutative semigroups, R-Commutative semigroups, conditionally commutative semigroups, RC-commutative semigroups, quasi commutative semigroups, medial semigroups, right commutative semigroups, externally commutative semigroups, E-m semigroups, WE-m semigroups, weakly exponential semigroups, (m,n)-commutative semigroups and n(2)-permutable semigroups. Audience: Students and researchers working in algebra and computer science Mathematics Group theory Group Theory and Generalizations Mathematics, general Mathematik https://doi.org/10.1007/978-1-4757-3316-7 Verlag Volltext |
spellingShingle | Nagy, Attila Special Classes of Semigroups Mathematics Group theory Group Theory and Generalizations Mathematics, general Mathematik |
title | Special Classes of Semigroups |
title_auth | Special Classes of Semigroups |
title_exact_search | Special Classes of Semigroups |
title_full | Special Classes of Semigroups by Attila Nagy |
title_fullStr | Special Classes of Semigroups by Attila Nagy |
title_full_unstemmed | Special Classes of Semigroups by Attila Nagy |
title_short | Special Classes of Semigroups |
title_sort | special classes of semigroups |
topic | Mathematics Group theory Group Theory and Generalizations Mathematics, general Mathematik |
topic_facet | Mathematics Group theory Group Theory and Generalizations Mathematics, general Mathematik |
url | https://doi.org/10.1007/978-1-4757-3316-7 |
work_keys_str_mv | AT nagyattila specialclassesofsemigroups |