Topics in Industrial Mathematics: Case Studies and Related Mathematical Methods
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2000
|
Schriftenreihe: | Applied Optimization
42 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Industrial Mathematics is a relatively recent discipline. It is concerned primarily with transforming technical, organizational and economic problems posed by industry into mathematical problems; "solving" these problems byapproximative methods of analytical and/or numerical nature; and finally reinterpreting the results in terms of the original problems. In short, industrial mathematics is modelling and scientific computing of industrial problems. Industrial mathematicians are bridge-builders: they build bridges from the field of mathematics to the practical world; to do that they need to know about both sides, the problems from the companies and ideas and methods from mathematics. As mathematicians, they have to be generalists. If you enter the world of industry, you never know which kind of problems you will encounter, and which kind of mathematical concepts and methods you will need to solve them. Hence, to be a good "industrial mathematician" you need to know a good deal of mathematics as well as ideas already common in engineering and modern mathematics with tremendous potential for application. Mathematical concepts like wavelets, pseudorandom numbers, inverse problems, multigrid etc., introduced during the last 20 years have recently started entering the world of real applications. Industrial mathematics consists of modelling, discretization, analysis and visualization. To make a good model, to transform the industrial problem into a mathematical one such that you can trust the prediction of the model is no easy task |
Beschreibung: | 1 Online-Ressource (XIII, 377 p) |
ISBN: | 9781475732221 9781441948335 |
ISSN: | 1384-6485 |
DOI: | 10.1007/978-1-4757-3222-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421442 | ||
003 | DE-604 | ||
005 | 20180110 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781475732221 |c Online |9 978-1-4757-3222-1 | ||
020 | |a 9781441948335 |c Print |9 978-1-4419-4833-5 | ||
024 | 7 | |a 10.1007/978-1-4757-3222-1 |2 doi | |
035 | |a (OCoLC)1184499650 | ||
035 | |a (DE-599)BVBBV042421442 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 003.3 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Neunzert, Helmut |e Verfasser |4 aut | |
245 | 1 | 0 | |a Topics in Industrial Mathematics |b Case Studies and Related Mathematical Methods |c by Helmut Neunzert, Abul Hasan Siddiqi |
264 | 1 | |a Boston, MA |b Springer US |c 2000 | |
300 | |a 1 Online-Ressource (XIII, 377 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Applied Optimization |v 42 |x 1384-6485 | |
500 | |a Industrial Mathematics is a relatively recent discipline. It is concerned primarily with transforming technical, organizational and economic problems posed by industry into mathematical problems; "solving" these problems byapproximative methods of analytical and/or numerical nature; and finally reinterpreting the results in terms of the original problems. In short, industrial mathematics is modelling and scientific computing of industrial problems. Industrial mathematicians are bridge-builders: they build bridges from the field of mathematics to the practical world; to do that they need to know about both sides, the problems from the companies and ideas and methods from mathematics. As mathematicians, they have to be generalists. If you enter the world of industry, you never know which kind of problems you will encounter, and which kind of mathematical concepts and methods you will need to solve them. Hence, to be a good "industrial mathematician" you need to know a good deal of mathematics as well as ideas already common in engineering and modern mathematics with tremendous potential for application. Mathematical concepts like wavelets, pseudorandom numbers, inverse problems, multigrid etc., introduced during the last 20 years have recently started entering the world of real applications. Industrial mathematics consists of modelling, discretization, analysis and visualization. To make a good model, to transform the industrial problem into a mathematical one such that you can trust the prediction of the model is no easy task | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Electronic data processing | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Mathematical Modeling and Industrial Mathematics | |
650 | 4 | |a Optimization | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Numeric Computing | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Angewandte Mathematik |0 (DE-588)4142443-8 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4522595-3 |a Fallstudiensammlung |2 gnd-content | |
689 | 0 | 0 | |a Angewandte Mathematik |0 (DE-588)4142443-8 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Siddiqi, Abul Hasan |e Sonstige |4 oth | |
830 | 0 | |a Applied Optimization |v 42 |w (DE-604)BV010841718 |9 42 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3222-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856859 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094505758720 |
---|---|
any_adam_object | |
author | Neunzert, Helmut |
author_facet | Neunzert, Helmut |
author_role | aut |
author_sort | Neunzert, Helmut |
author_variant | h n hn |
building | Verbundindex |
bvnumber | BV042421442 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184499650 (DE-599)BVBBV042421442 |
dewey-full | 003.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003.3 |
dewey-search | 003.3 |
dewey-sort | 13.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
doi_str_mv | 10.1007/978-1-4757-3222-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03747nmm a2200601zcb4500</leader><controlfield tag="001">BV042421442</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180110 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475732221</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3222-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441948335</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-4833-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3222-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184499650</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421442</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Neunzert, Helmut</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topics in Industrial Mathematics</subfield><subfield code="b">Case Studies and Related Mathematical Methods</subfield><subfield code="c">by Helmut Neunzert, Abul Hasan Siddiqi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 377 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied Optimization</subfield><subfield code="v">42</subfield><subfield code="x">1384-6485</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Industrial Mathematics is a relatively recent discipline. It is concerned primarily with transforming technical, organizational and economic problems posed by industry into mathematical problems; "solving" these problems byapproximative methods of analytical and/or numerical nature; and finally reinterpreting the results in terms of the original problems. In short, industrial mathematics is modelling and scientific computing of industrial problems. Industrial mathematicians are bridge-builders: they build bridges from the field of mathematics to the practical world; to do that they need to know about both sides, the problems from the companies and ideas and methods from mathematics. As mathematicians, they have to be generalists. If you enter the world of industry, you never know which kind of problems you will encounter, and which kind of mathematical concepts and methods you will need to solve them. Hence, to be a good "industrial mathematician" you need to know a good deal of mathematics as well as ideas already common in engineering and modern mathematics with tremendous potential for application. Mathematical concepts like wavelets, pseudorandom numbers, inverse problems, multigrid etc., introduced during the last 20 years have recently started entering the world of real applications. Industrial mathematics consists of modelling, discretization, analysis and visualization. To make a good model, to transform the industrial problem into a mathematical one such that you can trust the prediction of the model is no easy task</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Modeling and Industrial Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numeric Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4522595-3</subfield><subfield code="a">Fallstudiensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Siddiqi, Abul Hasan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied Optimization</subfield><subfield code="v">42</subfield><subfield code="w">(DE-604)BV010841718</subfield><subfield code="9">42</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3222-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856859</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4522595-3 Fallstudiensammlung gnd-content |
genre_facet | Fallstudiensammlung |
id | DE-604.BV042421442 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475732221 9781441948335 |
issn | 1384-6485 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856859 |
oclc_num | 1184499650 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 377 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer US |
record_format | marc |
series | Applied Optimization |
series2 | Applied Optimization |
spelling | Neunzert, Helmut Verfasser aut Topics in Industrial Mathematics Case Studies and Related Mathematical Methods by Helmut Neunzert, Abul Hasan Siddiqi Boston, MA Springer US 2000 1 Online-Ressource (XIII, 377 p) txt rdacontent c rdamedia cr rdacarrier Applied Optimization 42 1384-6485 Industrial Mathematics is a relatively recent discipline. It is concerned primarily with transforming technical, organizational and economic problems posed by industry into mathematical problems; "solving" these problems byapproximative methods of analytical and/or numerical nature; and finally reinterpreting the results in terms of the original problems. In short, industrial mathematics is modelling and scientific computing of industrial problems. Industrial mathematicians are bridge-builders: they build bridges from the field of mathematics to the practical world; to do that they need to know about both sides, the problems from the companies and ideas and methods from mathematics. As mathematicians, they have to be generalists. If you enter the world of industry, you never know which kind of problems you will encounter, and which kind of mathematical concepts and methods you will need to solve them. Hence, to be a good "industrial mathematician" you need to know a good deal of mathematics as well as ideas already common in engineering and modern mathematics with tremendous potential for application. Mathematical concepts like wavelets, pseudorandom numbers, inverse problems, multigrid etc., introduced during the last 20 years have recently started entering the world of real applications. Industrial mathematics consists of modelling, discretization, analysis and visualization. To make a good model, to transform the industrial problem into a mathematical one such that you can trust the prediction of the model is no easy task Mathematics Electronic data processing Computer science / Mathematics Algorithms Mathematical optimization Mathematical Modeling and Industrial Mathematics Optimization Computational Mathematics and Numerical Analysis Numeric Computing Datenverarbeitung Informatik Mathematik Angewandte Mathematik (DE-588)4142443-8 gnd rswk-swf 1\p (DE-588)4522595-3 Fallstudiensammlung gnd-content Angewandte Mathematik (DE-588)4142443-8 s 2\p DE-604 Siddiqi, Abul Hasan Sonstige oth Applied Optimization 42 (DE-604)BV010841718 42 https://doi.org/10.1007/978-1-4757-3222-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Neunzert, Helmut Topics in Industrial Mathematics Case Studies and Related Mathematical Methods Applied Optimization Mathematics Electronic data processing Computer science / Mathematics Algorithms Mathematical optimization Mathematical Modeling and Industrial Mathematics Optimization Computational Mathematics and Numerical Analysis Numeric Computing Datenverarbeitung Informatik Mathematik Angewandte Mathematik (DE-588)4142443-8 gnd |
subject_GND | (DE-588)4142443-8 (DE-588)4522595-3 |
title | Topics in Industrial Mathematics Case Studies and Related Mathematical Methods |
title_auth | Topics in Industrial Mathematics Case Studies and Related Mathematical Methods |
title_exact_search | Topics in Industrial Mathematics Case Studies and Related Mathematical Methods |
title_full | Topics in Industrial Mathematics Case Studies and Related Mathematical Methods by Helmut Neunzert, Abul Hasan Siddiqi |
title_fullStr | Topics in Industrial Mathematics Case Studies and Related Mathematical Methods by Helmut Neunzert, Abul Hasan Siddiqi |
title_full_unstemmed | Topics in Industrial Mathematics Case Studies and Related Mathematical Methods by Helmut Neunzert, Abul Hasan Siddiqi |
title_short | Topics in Industrial Mathematics |
title_sort | topics in industrial mathematics case studies and related mathematical methods |
title_sub | Case Studies and Related Mathematical Methods |
topic | Mathematics Electronic data processing Computer science / Mathematics Algorithms Mathematical optimization Mathematical Modeling and Industrial Mathematics Optimization Computational Mathematics and Numerical Analysis Numeric Computing Datenverarbeitung Informatik Mathematik Angewandte Mathematik (DE-588)4142443-8 gnd |
topic_facet | Mathematics Electronic data processing Computer science / Mathematics Algorithms Mathematical optimization Mathematical Modeling and Industrial Mathematics Optimization Computational Mathematics and Numerical Analysis Numeric Computing Datenverarbeitung Informatik Mathematik Angewandte Mathematik Fallstudiensammlung |
url | https://doi.org/10.1007/978-1-4757-3222-1 |
volume_link | (DE-604)BV010841718 |
work_keys_str_mv | AT neunzerthelmut topicsinindustrialmathematicscasestudiesandrelatedmathematicalmethods AT siddiqiabulhasan topicsinindustrialmathematicscasestudiesandrelatedmathematicalmethods |