Advances in Steiner Trees:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2000
|
Schriftenreihe: | Combinatorial Optimization
6 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The Volume on Advances in Steiner Trees is divided into two sections. The first section of the book includes papers on the general geometric Steiner tree problem in the plane and higher dimensions. The second section of the book includes papers on the Steiner problem on graphs. The general geometric Steiner tree problem assumes that you have a given set of points in some d-dimensional space and you wish to connect the given points with the shortest network possible. The given set ofpoints are 3 Figure 1: Euclidean Steiner Problem in E usually referred to as terminals and the set ofpoints that may be added to reduce the overall length of the network are referred to as Steiner points. What makes the problem difficult is that we do not know a priori the location and cardinality ofthe number ofSteiner points. Thus)the problem on the Euclidean metric is not known to be in NP and has not been shown to be NP-Complete. It is thus a very difficult NP-Hard problem |
Beschreibung: | 1 Online-Ressource (XII, 323 p) |
ISBN: | 9781475731712 9781441948243 |
ISSN: | 1388-3011 |
DOI: | 10.1007/978-1-4757-3171-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421434 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781475731712 |c Online |9 978-1-4757-3171-2 | ||
020 | |a 9781441948243 |c Print |9 978-1-4419-4824-3 | ||
024 | 7 | |a 10.1007/978-1-4757-3171-2 |2 doi | |
035 | |a (OCoLC)864079074 | ||
035 | |a (DE-599)BVBBV042421434 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.6 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Du, Ding-Zhu |e Verfasser |4 aut | |
245 | 1 | 0 | |a Advances in Steiner Trees |c edited by Ding-Zhu Du, J. M. Smith, J. H. Rubinstein |
264 | 1 | |a Boston, MA |b Springer US |c 2000 | |
300 | |a 1 Online-Ressource (XII, 323 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Combinatorial Optimization |v 6 |x 1388-3011 | |
500 | |a The Volume on Advances in Steiner Trees is divided into two sections. The first section of the book includes papers on the general geometric Steiner tree problem in the plane and higher dimensions. The second section of the book includes papers on the Steiner problem on graphs. The general geometric Steiner tree problem assumes that you have a given set of points in some d-dimensional space and you wish to connect the given points with the shortest network possible. The given set ofpoints are 3 Figure 1: Euclidean Steiner Problem in E usually referred to as terminals and the set ofpoints that may be added to reduce the overall length of the network are referred to as Steiner points. What makes the problem difficult is that we do not know a priori the location and cardinality ofthe number ofSteiner points. Thus)the problem on the Euclidean metric is not known to be in NP and has not been shown to be NP-Complete. It is thus a very difficult NP-Hard problem | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Information theory | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Theory of Computation | |
650 | 4 | |a Optimization | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Smith, J. M. |e Sonstige |4 oth | |
700 | 1 | |a Rubinstein, J. H. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3171-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856851 |
Datensatz im Suchindex
_version_ | 1804153094486884352 |
---|---|
any_adam_object | |
author | Du, Ding-Zhu |
author_facet | Du, Ding-Zhu |
author_role | aut |
author_sort | Du, Ding-Zhu |
author_variant | d z d dzd |
building | Verbundindex |
bvnumber | BV042421434 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864079074 (DE-599)BVBBV042421434 |
dewey-full | 511.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.6 |
dewey-search | 511.6 |
dewey-sort | 3511.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-3171-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02483nmm a2200481zcb4500</leader><controlfield tag="001">BV042421434</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475731712</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3171-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441948243</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-4824-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3171-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864079074</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421434</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Du, Ding-Zhu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in Steiner Trees</subfield><subfield code="c">edited by Ding-Zhu Du, J. M. Smith, J. H. Rubinstein</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 323 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Combinatorial Optimization</subfield><subfield code="v">6</subfield><subfield code="x">1388-3011</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The Volume on Advances in Steiner Trees is divided into two sections. The first section of the book includes papers on the general geometric Steiner tree problem in the plane and higher dimensions. The second section of the book includes papers on the Steiner problem on graphs. The general geometric Steiner tree problem assumes that you have a given set of points in some d-dimensional space and you wish to connect the given points with the shortest network possible. The given set ofpoints are 3 Figure 1: Euclidean Steiner Problem in E usually referred to as terminals and the set ofpoints that may be added to reduce the overall length of the network are referred to as Steiner points. What makes the problem difficult is that we do not know a priori the location and cardinality ofthe number ofSteiner points. Thus)the problem on the Euclidean metric is not known to be in NP and has not been shown to be NP-Complete. It is thus a very difficult NP-Hard problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory of Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, J. M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rubinstein, J. H.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3171-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856851</subfield></datafield></record></collection> |
id | DE-604.BV042421434 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475731712 9781441948243 |
issn | 1388-3011 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856851 |
oclc_num | 864079074 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 323 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer US |
record_format | marc |
series2 | Combinatorial Optimization |
spelling | Du, Ding-Zhu Verfasser aut Advances in Steiner Trees edited by Ding-Zhu Du, J. M. Smith, J. H. Rubinstein Boston, MA Springer US 2000 1 Online-Ressource (XII, 323 p) txt rdacontent c rdamedia cr rdacarrier Combinatorial Optimization 6 1388-3011 The Volume on Advances in Steiner Trees is divided into two sections. The first section of the book includes papers on the general geometric Steiner tree problem in the plane and higher dimensions. The second section of the book includes papers on the Steiner problem on graphs. The general geometric Steiner tree problem assumes that you have a given set of points in some d-dimensional space and you wish to connect the given points with the shortest network possible. The given set ofpoints are 3 Figure 1: Euclidean Steiner Problem in E usually referred to as terminals and the set ofpoints that may be added to reduce the overall length of the network are referred to as Steiner points. What makes the problem difficult is that we do not know a priori the location and cardinality ofthe number ofSteiner points. Thus)the problem on the Euclidean metric is not known to be in NP and has not been shown to be NP-Complete. It is thus a very difficult NP-Hard problem Mathematics Information theory Algorithms Combinatorics Mathematical optimization Theory of Computation Optimization Mathematik Smith, J. M. Sonstige oth Rubinstein, J. H. Sonstige oth https://doi.org/10.1007/978-1-4757-3171-2 Verlag Volltext |
spellingShingle | Du, Ding-Zhu Advances in Steiner Trees Mathematics Information theory Algorithms Combinatorics Mathematical optimization Theory of Computation Optimization Mathematik |
title | Advances in Steiner Trees |
title_auth | Advances in Steiner Trees |
title_exact_search | Advances in Steiner Trees |
title_full | Advances in Steiner Trees edited by Ding-Zhu Du, J. M. Smith, J. H. Rubinstein |
title_fullStr | Advances in Steiner Trees edited by Ding-Zhu Du, J. M. Smith, J. H. Rubinstein |
title_full_unstemmed | Advances in Steiner Trees edited by Ding-Zhu Du, J. M. Smith, J. H. Rubinstein |
title_short | Advances in Steiner Trees |
title_sort | advances in steiner trees |
topic | Mathematics Information theory Algorithms Combinatorics Mathematical optimization Theory of Computation Optimization Mathematik |
topic_facet | Mathematics Information theory Algorithms Combinatorics Mathematical optimization Theory of Computation Optimization Mathematik |
url | https://doi.org/10.1007/978-1-4757-3171-2 |
work_keys_str_mv | AT dudingzhu advancesinsteinertrees AT smithjm advancesinsteinertrees AT rubinsteinjh advancesinsteinertrees |