Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1999
|
Schriftenreihe: | Texts in Applied Mathematics
31 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In this book, the author begins with the elementary theory of Markov chains and very progressively brings the reader to the more advanced topics. He gives a useful review of probability that makes the book self-contained, and provides an appendix with detailed proofs of all the prerequisites from calculus, algebra, and number theory. A number of carefully chosen problems of varying difficulty are proposed at the close of each chapter, and the mathematics are slowly and carefully developed, in order to make self-study easier. The author treats the classic topics of Markov chain theory, both in discrete time and continuous time, as well as the connected topics such as finite Gibbs fields, nonhomogeneous Markov chains, discrete- time regenerative processes, Monte Carlo simulation, simulated annealing, and queuing theory. The result is an up-to-date textbook on stochastic processes. Students and researchers in operations research and electrical engineering, as well as in physics and biology, will find it very accessible and relevant |
Beschreibung: | 1 Online-Ressource (XVIII, 445 p) |
ISBN: | 9781475731248 9781441931313 |
ISSN: | 0939-2475 |
DOI: | 10.1007/978-1-4757-3124-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421424 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781475731248 |c Online |9 978-1-4757-3124-8 | ||
020 | |a 9781441931313 |c Print |9 978-1-4419-3131-3 | ||
024 | 7 | |a 10.1007/978-1-4757-3124-8 |2 doi | |
035 | |a (OCoLC)863936859 | ||
035 | |a (DE-599)BVBBV042421424 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Brémaud, Pierre |e Verfasser |4 aut | |
245 | 1 | 0 | |a Markov Chains |b Gibbs Fields, Monte Carlo Simulation, and Queues |c by Pierre Brémaud |
264 | 1 | |a New York, NY |b Springer New York |c 1999 | |
300 | |a 1 Online-Ressource (XVIII, 445 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Texts in Applied Mathematics |v 31 |x 0939-2475 | |
500 | |a In this book, the author begins with the elementary theory of Markov chains and very progressively brings the reader to the more advanced topics. He gives a useful review of probability that makes the book self-contained, and provides an appendix with detailed proofs of all the prerequisites from calculus, algebra, and number theory. A number of carefully chosen problems of varying difficulty are proposed at the close of each chapter, and the mathematics are slowly and carefully developed, in order to make self-study easier. The author treats the classic topics of Markov chain theory, both in discrete time and continuous time, as well as the connected topics such as finite Gibbs fields, nonhomogeneous Markov chains, discrete- time regenerative processes, Monte Carlo simulation, simulated annealing, and queuing theory. The result is an up-to-date textbook on stochastic processes. Students and researchers in operations research and electrical engineering, as well as in physics and biology, will find it very accessible and relevant | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Computer engineering | |
650 | 4 | |a Operations research | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Operation Research/Decision Theory | |
650 | 4 | |a Electrical Engineering | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Markov-Kette |0 (DE-588)4037612-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Markov-Kette |0 (DE-588)4037612-6 |D s |
689 | 0 | 1 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3124-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856841 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094475350016 |
---|---|
any_adam_object | |
author | Brémaud, Pierre |
author_facet | Brémaud, Pierre |
author_role | aut |
author_sort | Brémaud, Pierre |
author_variant | p b pb |
building | Verbundindex |
bvnumber | BV042421424 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863936859 (DE-599)BVBBV042421424 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-3124-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03069nmm a2200553zcb4500</leader><controlfield tag="001">BV042421424</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475731248</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3124-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441931313</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-3131-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3124-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863936859</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421424</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brémaud, Pierre</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Markov Chains</subfield><subfield code="b">Gibbs Fields, Monte Carlo Simulation, and Queues</subfield><subfield code="c">by Pierre Brémaud</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 445 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts in Applied Mathematics</subfield><subfield code="v">31</subfield><subfield code="x">0939-2475</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this book, the author begins with the elementary theory of Markov chains and very progressively brings the reader to the more advanced topics. He gives a useful review of probability that makes the book self-contained, and provides an appendix with detailed proofs of all the prerequisites from calculus, algebra, and number theory. A number of carefully chosen problems of varying difficulty are proposed at the close of each chapter, and the mathematics are slowly and carefully developed, in order to make self-study easier. The author treats the classic topics of Markov chain theory, both in discrete time and continuous time, as well as the connected topics such as finite Gibbs fields, nonhomogeneous Markov chains, discrete- time regenerative processes, Monte Carlo simulation, simulated annealing, and queuing theory. The result is an up-to-date textbook on stochastic processes. Students and researchers in operations research and electrical engineering, as well as in physics and biology, will find it very accessible and relevant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operation Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Kette</subfield><subfield code="0">(DE-588)4037612-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Markov-Kette</subfield><subfield code="0">(DE-588)4037612-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3124-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856841</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV042421424 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475731248 9781441931313 |
issn | 0939-2475 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856841 |
oclc_num | 863936859 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 445 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer New York |
record_format | marc |
series2 | Texts in Applied Mathematics |
spelling | Brémaud, Pierre Verfasser aut Markov Chains Gibbs Fields, Monte Carlo Simulation, and Queues by Pierre Brémaud New York, NY Springer New York 1999 1 Online-Ressource (XVIII, 445 p) txt rdacontent c rdamedia cr rdacarrier Texts in Applied Mathematics 31 0939-2475 In this book, the author begins with the elementary theory of Markov chains and very progressively brings the reader to the more advanced topics. He gives a useful review of probability that makes the book self-contained, and provides an appendix with detailed proofs of all the prerequisites from calculus, algebra, and number theory. A number of carefully chosen problems of varying difficulty are proposed at the close of each chapter, and the mathematics are slowly and carefully developed, in order to make self-study easier. The author treats the classic topics of Markov chain theory, both in discrete time and continuous time, as well as the connected topics such as finite Gibbs fields, nonhomogeneous Markov chains, discrete- time regenerative processes, Monte Carlo simulation, simulated annealing, and queuing theory. The result is an up-to-date textbook on stochastic processes. Students and researchers in operations research and electrical engineering, as well as in physics and biology, will find it very accessible and relevant Mathematics Distribution (Probability theory) Computer engineering Operations research Probability Theory and Stochastic Processes Operation Research/Decision Theory Electrical Engineering Mathematik Markov-Kette (DE-588)4037612-6 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Markov-Kette (DE-588)4037612-6 s Stochastischer Prozess (DE-588)4057630-9 s 2\p DE-604 https://doi.org/10.1007/978-1-4757-3124-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Brémaud, Pierre Markov Chains Gibbs Fields, Monte Carlo Simulation, and Queues Mathematics Distribution (Probability theory) Computer engineering Operations research Probability Theory and Stochastic Processes Operation Research/Decision Theory Electrical Engineering Mathematik Markov-Kette (DE-588)4037612-6 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
subject_GND | (DE-588)4037612-6 (DE-588)4057630-9 (DE-588)4123623-3 |
title | Markov Chains Gibbs Fields, Monte Carlo Simulation, and Queues |
title_auth | Markov Chains Gibbs Fields, Monte Carlo Simulation, and Queues |
title_exact_search | Markov Chains Gibbs Fields, Monte Carlo Simulation, and Queues |
title_full | Markov Chains Gibbs Fields, Monte Carlo Simulation, and Queues by Pierre Brémaud |
title_fullStr | Markov Chains Gibbs Fields, Monte Carlo Simulation, and Queues by Pierre Brémaud |
title_full_unstemmed | Markov Chains Gibbs Fields, Monte Carlo Simulation, and Queues by Pierre Brémaud |
title_short | Markov Chains |
title_sort | markov chains gibbs fields monte carlo simulation and queues |
title_sub | Gibbs Fields, Monte Carlo Simulation, and Queues |
topic | Mathematics Distribution (Probability theory) Computer engineering Operations research Probability Theory and Stochastic Processes Operation Research/Decision Theory Electrical Engineering Mathematik Markov-Kette (DE-588)4037612-6 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
topic_facet | Mathematics Distribution (Probability theory) Computer engineering Operations research Probability Theory and Stochastic Processes Operation Research/Decision Theory Electrical Engineering Mathematik Markov-Kette Stochastischer Prozess Lehrbuch |
url | https://doi.org/10.1007/978-1-4757-3124-8 |
work_keys_str_mv | AT bremaudpierre markovchainsgibbsfieldsmontecarlosimulationandqueues |