Convex Analysis and Global Optimization:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1998
|
Schriftenreihe: | Nonconvex Optimization and Its Applications
22 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Due to the general complementary convex structure underlying most nonconvex optimization problems encountered in applications, convex analysis plays an essential role in the development of global optimization methods. This book develops a coherent and rigorous theory of deterministic global optimization from this point of view. Part I constitutes an introduction to convex analysis, with an emphasis on concepts, properties and results particularly needed for global optimization, including those pertaining to the complementary convex structure. Part II presents the foundation and application of global search principles such as partitioning and cutting, outer and inner approximation, and decomposition to general global optimization problems and to problems with a low-rank nonconvex structure as well as quadratic problems. Much new material is offered, aside from a rigorous mathematical development. Audience: The book is written as a text for graduate students in engineering, mathematics, operations research, computer science and other disciplines dealing with optimization theory. It is also addressed to all scientists in various fields who are interested in mathematical optimization |
Beschreibung: | 1 Online-Ressource (XII, 340 p) |
ISBN: | 9781475728095 9781441947833 |
ISSN: | 1571-568X |
DOI: | 10.1007/978-1-4757-2809-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421384 | ||
003 | DE-604 | ||
005 | 20180108 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9781475728095 |c Online |9 978-1-4757-2809-5 | ||
020 | |a 9781441947833 |c Print |9 978-1-4419-4783-3 | ||
024 | 7 | |a 10.1007/978-1-4757-2809-5 |2 doi | |
035 | |a (OCoLC)1184506880 | ||
035 | |a (DE-599)BVBBV042421384 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.64 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Tuy, Hoang |e Verfasser |4 aut | |
245 | 1 | 0 | |a Convex Analysis and Global Optimization |c by Hoang Tuy |
264 | 1 | |a Boston, MA |b Springer US |c 1998 | |
300 | |a 1 Online-Ressource (XII, 340 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Nonconvex Optimization and Its Applications |v 22 |x 1571-568X | |
500 | |a Due to the general complementary convex structure underlying most nonconvex optimization problems encountered in applications, convex analysis plays an essential role in the development of global optimization methods. This book develops a coherent and rigorous theory of deterministic global optimization from this point of view. Part I constitutes an introduction to convex analysis, with an emphasis on concepts, properties and results particularly needed for global optimization, including those pertaining to the complementary convex structure. Part II presents the foundation and application of global search principles such as partitioning and cutting, outer and inner approximation, and decomposition to general global optimization problems and to problems with a low-rank nonconvex structure as well as quadratic problems. Much new material is offered, aside from a rigorous mathematical development. Audience: The book is written as a text for graduate students in engineering, mathematics, operations research, computer science and other disciplines dealing with optimization theory. It is also addressed to all scientists in various fields who are interested in mathematical optimization | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Information theory | |
650 | 4 | |a Electronic data processing | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Economics | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Numeric Computing | |
650 | 4 | |a Mathematical Modeling and Industrial Mathematics | |
650 | 4 | |a Theory of Computation | |
650 | 4 | |a Business/Management Science, general | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Wirtschaft | |
650 | 0 | 7 | |a Globale Optimierung |0 (DE-588)4140067-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexe Analysis |0 (DE-588)4138566-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Konvexe Analysis |0 (DE-588)4138566-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Globale Optimierung |0 (DE-588)4140067-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
830 | 0 | |a Nonconvex Optimization and Its Applications |v 22 |w (DE-604)BV010085908 |9 22 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-2809-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856801 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094374686720 |
---|---|
any_adam_object | |
author | Tuy, Hoang |
author_facet | Tuy, Hoang |
author_role | aut |
author_sort | Tuy, Hoang |
author_variant | h t ht |
building | Verbundindex |
bvnumber | BV042421384 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184506880 (DE-599)BVBBV042421384 |
dewey-full | 515.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.64 |
dewey-search | 515.64 |
dewey-sort | 3515.64 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-2809-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03448nmm a2200625zcb4500</leader><controlfield tag="001">BV042421384</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180108 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475728095</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-2809-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441947833</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-4783-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-2809-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184506880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421384</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.64</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tuy, Hoang</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convex Analysis and Global Optimization</subfield><subfield code="c">by Hoang Tuy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 340 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Nonconvex Optimization and Its Applications</subfield><subfield code="v">22</subfield><subfield code="x">1571-568X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Due to the general complementary convex structure underlying most nonconvex optimization problems encountered in applications, convex analysis plays an essential role in the development of global optimization methods. This book develops a coherent and rigorous theory of deterministic global optimization from this point of view. Part I constitutes an introduction to convex analysis, with an emphasis on concepts, properties and results particularly needed for global optimization, including those pertaining to the complementary convex structure. Part II presents the foundation and application of global search principles such as partitioning and cutting, outer and inner approximation, and decomposition to general global optimization problems and to problems with a low-rank nonconvex structure as well as quadratic problems. Much new material is offered, aside from a rigorous mathematical development. Audience: The book is written as a text for graduate students in engineering, mathematics, operations research, computer science and other disciplines dealing with optimization theory. It is also addressed to all scientists in various fields who are interested in mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numeric Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Modeling and Industrial Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory of Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business/Management Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wirtschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Optimierung</subfield><subfield code="0">(DE-588)4140067-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Analysis</subfield><subfield code="0">(DE-588)4138566-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvexe Analysis</subfield><subfield code="0">(DE-588)4138566-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Globale Optimierung</subfield><subfield code="0">(DE-588)4140067-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Nonconvex Optimization and Its Applications</subfield><subfield code="v">22</subfield><subfield code="w">(DE-604)BV010085908</subfield><subfield code="9">22</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-2809-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856801</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421384 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781475728095 9781441947833 |
issn | 1571-568X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856801 |
oclc_num | 1184506880 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 340 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer US |
record_format | marc |
series | Nonconvex Optimization and Its Applications |
series2 | Nonconvex Optimization and Its Applications |
spelling | Tuy, Hoang Verfasser aut Convex Analysis and Global Optimization by Hoang Tuy Boston, MA Springer US 1998 1 Online-Ressource (XII, 340 p) txt rdacontent c rdamedia cr rdacarrier Nonconvex Optimization and Its Applications 22 1571-568X Due to the general complementary convex structure underlying most nonconvex optimization problems encountered in applications, convex analysis plays an essential role in the development of global optimization methods. This book develops a coherent and rigorous theory of deterministic global optimization from this point of view. Part I constitutes an introduction to convex analysis, with an emphasis on concepts, properties and results particularly needed for global optimization, including those pertaining to the complementary convex structure. Part II presents the foundation and application of global search principles such as partitioning and cutting, outer and inner approximation, and decomposition to general global optimization problems and to problems with a low-rank nonconvex structure as well as quadratic problems. Much new material is offered, aside from a rigorous mathematical development. Audience: The book is written as a text for graduate students in engineering, mathematics, operations research, computer science and other disciplines dealing with optimization theory. It is also addressed to all scientists in various fields who are interested in mathematical optimization Mathematics Information theory Electronic data processing Mathematical optimization Economics Calculus of Variations and Optimal Control; Optimization Numeric Computing Mathematical Modeling and Industrial Mathematics Theory of Computation Business/Management Science, general Datenverarbeitung Mathematik Wirtschaft Globale Optimierung (DE-588)4140067-7 gnd rswk-swf Konvexe Analysis (DE-588)4138566-4 gnd rswk-swf Konvexe Analysis (DE-588)4138566-4 s 1\p DE-604 Globale Optimierung (DE-588)4140067-7 s 2\p DE-604 Nonconvex Optimization and Its Applications 22 (DE-604)BV010085908 22 https://doi.org/10.1007/978-1-4757-2809-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Tuy, Hoang Convex Analysis and Global Optimization Nonconvex Optimization and Its Applications Mathematics Information theory Electronic data processing Mathematical optimization Economics Calculus of Variations and Optimal Control; Optimization Numeric Computing Mathematical Modeling and Industrial Mathematics Theory of Computation Business/Management Science, general Datenverarbeitung Mathematik Wirtschaft Globale Optimierung (DE-588)4140067-7 gnd Konvexe Analysis (DE-588)4138566-4 gnd |
subject_GND | (DE-588)4140067-7 (DE-588)4138566-4 |
title | Convex Analysis and Global Optimization |
title_auth | Convex Analysis and Global Optimization |
title_exact_search | Convex Analysis and Global Optimization |
title_full | Convex Analysis and Global Optimization by Hoang Tuy |
title_fullStr | Convex Analysis and Global Optimization by Hoang Tuy |
title_full_unstemmed | Convex Analysis and Global Optimization by Hoang Tuy |
title_short | Convex Analysis and Global Optimization |
title_sort | convex analysis and global optimization |
topic | Mathematics Information theory Electronic data processing Mathematical optimization Economics Calculus of Variations and Optimal Control; Optimization Numeric Computing Mathematical Modeling and Industrial Mathematics Theory of Computation Business/Management Science, general Datenverarbeitung Mathematik Wirtschaft Globale Optimierung (DE-588)4140067-7 gnd Konvexe Analysis (DE-588)4138566-4 gnd |
topic_facet | Mathematics Information theory Electronic data processing Mathematical optimization Economics Calculus of Variations and Optimal Control; Optimization Numeric Computing Mathematical Modeling and Industrial Mathematics Theory of Computation Business/Management Science, general Datenverarbeitung Mathematik Wirtschaft Globale Optimierung Konvexe Analysis |
url | https://doi.org/10.1007/978-1-4757-2809-5 |
volume_link | (DE-604)BV010085908 |
work_keys_str_mv | AT tuyhoang convexanalysisandglobaloptimization |