Computational Complexity and Feasibility of Data Processing and Interval Computations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1998
|
Schriftenreihe: | Applied Optimization
10 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Targeted audience - Specialists in numerical computations, especially in numerical optimization, who are interested in designing algorithms with automatie result verification, and who would therefore be interested in knowing how general their algorithms can in principle be. - Mathematicians and computer scientists who are interested in the theory 0/ computing and computational complexity, especially computational complexity of numerical computations. - Students in applied mathematics and computer science who are interested in computational complexity of different numerical methods and in learning general techniques for estimating this computational complexity. The book is written with all explanations and definitions added, so that it can be used as a graduate level textbook. What this book is about Data processing. In many real-life situations, we are interested in the value of a physical quantity y that is diflicult (or even impossible) to measure directly. For example, it is impossible to directly measure the amount of oil in an oil field or a distance to a star. Since we cannot measure such quantities directly, we measure them indirectly, by measuring some other quantities Xi and using the known relation between y and Xi'S to reconstruct y. The algorithm that transforms the results Xi of measuring Xi into an estimate fj for y is called data processing |
Beschreibung: | 1 Online-Ressource (XII, 459 p) |
ISBN: | 9781475727937 9781441947857 |
ISSN: | 1384-6485 |
DOI: | 10.1007/978-1-4757-2793-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421383 | ||
003 | DE-604 | ||
005 | 20170918 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9781475727937 |c Online |9 978-1-4757-2793-7 | ||
020 | |a 9781441947857 |c Print |9 978-1-4419-4785-7 | ||
024 | 7 | |a 10.1007/978-1-4757-2793-7 |2 doi | |
035 | |a (OCoLC)1047727790 | ||
035 | |a (DE-599)BVBBV042421383 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kreinovich, Vladik |e Verfasser |4 aut | |
245 | 1 | 0 | |a Computational Complexity and Feasibility of Data Processing and Interval Computations |c by Vladik Kreinovich, Anatoly Lakeyev, Jiří Rohn, Patrick Kahl |
264 | 1 | |a Boston, MA |b Springer US |c 1998 | |
300 | |a 1 Online-Ressource (XII, 459 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Applied Optimization |v 10 |x 1384-6485 | |
500 | |a Targeted audience - Specialists in numerical computations, especially in numerical optimization, who are interested in designing algorithms with automatie result verification, and who would therefore be interested in knowing how general their algorithms can in principle be. - Mathematicians and computer scientists who are interested in the theory 0/ computing and computational complexity, especially computational complexity of numerical computations. - Students in applied mathematics and computer science who are interested in computational complexity of different numerical methods and in learning general techniques for estimating this computational complexity. The book is written with all explanations and definitions added, so that it can be used as a graduate level textbook. What this book is about Data processing. In many real-life situations, we are interested in the value of a physical quantity y that is diflicult (or even impossible) to measure directly. For example, it is impossible to directly measure the amount of oil in an oil field or a distance to a star. Since we cannot measure such quantities directly, we measure them indirectly, by measuring some other quantities Xi and using the known relation between y and Xi'S to reconstruct y. The algorithm that transforms the results Xi of measuring Xi into an estimate fj for y is called data processing | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Information theory | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Theory of Computation | |
650 | 4 | |a Optimization | |
650 | 4 | |a Mathematical Modeling and Industrial Mathematics | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Berechnungskomplexität |0 (DE-588)4134751-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bereichsschätzung |0 (DE-588)4140553-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bereichsschätzung |0 (DE-588)4140553-5 |D s |
689 | 0 | 1 | |a Berechnungskomplexität |0 (DE-588)4134751-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Lakeyev, Anatoly |e Sonstige |4 oth | |
700 | 1 | |a Rohn, Jiří |e Sonstige |4 oth | |
700 | 1 | |a Kahl, Patrick |e Sonstige |4 oth | |
830 | 0 | |a Applied Optimization |v 10 |w (DE-604)BV010841718 |9 10 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-2793-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856800 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094375735296 |
---|---|
any_adam_object | |
author | Kreinovich, Vladik |
author_facet | Kreinovich, Vladik |
author_role | aut |
author_sort | Kreinovich, Vladik |
author_variant | v k vk |
building | Verbundindex |
bvnumber | BV042421383 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1047727790 (DE-599)BVBBV042421383 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-2793-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03641nmm a2200613zcb4500</leader><controlfield tag="001">BV042421383</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170918 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475727937</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-2793-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441947857</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-4785-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-2793-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1047727790</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421383</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kreinovich, Vladik</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational Complexity and Feasibility of Data Processing and Interval Computations</subfield><subfield code="c">by Vladik Kreinovich, Anatoly Lakeyev, Jiří Rohn, Patrick Kahl</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 459 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied Optimization</subfield><subfield code="v">10</subfield><subfield code="x">1384-6485</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Targeted audience - Specialists in numerical computations, especially in numerical optimization, who are interested in designing algorithms with automatie result verification, and who would therefore be interested in knowing how general their algorithms can in principle be. - Mathematicians and computer scientists who are interested in the theory 0/ computing and computational complexity, especially computational complexity of numerical computations. - Students in applied mathematics and computer science who are interested in computational complexity of different numerical methods and in learning general techniques for estimating this computational complexity. The book is written with all explanations and definitions added, so that it can be used as a graduate level textbook. What this book is about Data processing. In many real-life situations, we are interested in the value of a physical quantity y that is diflicult (or even impossible) to measure directly. For example, it is impossible to directly measure the amount of oil in an oil field or a distance to a star. Since we cannot measure such quantities directly, we measure them indirectly, by measuring some other quantities Xi and using the known relation between y and Xi'S to reconstruct y. The algorithm that transforms the results Xi of measuring Xi into an estimate fj for y is called data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory of Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Modeling and Industrial Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Berechnungskomplexität</subfield><subfield code="0">(DE-588)4134751-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bereichsschätzung</subfield><subfield code="0">(DE-588)4140553-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bereichsschätzung</subfield><subfield code="0">(DE-588)4140553-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Berechnungskomplexität</subfield><subfield code="0">(DE-588)4134751-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lakeyev, Anatoly</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rohn, Jiří</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kahl, Patrick</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied Optimization</subfield><subfield code="v">10</subfield><subfield code="w">(DE-604)BV010841718</subfield><subfield code="9">10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-2793-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856800</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421383 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781475727937 9781441947857 |
issn | 1384-6485 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856800 |
oclc_num | 1047727790 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 459 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer US |
record_format | marc |
series | Applied Optimization |
series2 | Applied Optimization |
spelling | Kreinovich, Vladik Verfasser aut Computational Complexity and Feasibility of Data Processing and Interval Computations by Vladik Kreinovich, Anatoly Lakeyev, Jiří Rohn, Patrick Kahl Boston, MA Springer US 1998 1 Online-Ressource (XII, 459 p) txt rdacontent c rdamedia cr rdacarrier Applied Optimization 10 1384-6485 Targeted audience - Specialists in numerical computations, especially in numerical optimization, who are interested in designing algorithms with automatie result verification, and who would therefore be interested in knowing how general their algorithms can in principle be. - Mathematicians and computer scientists who are interested in the theory 0/ computing and computational complexity, especially computational complexity of numerical computations. - Students in applied mathematics and computer science who are interested in computational complexity of different numerical methods and in learning general techniques for estimating this computational complexity. The book is written with all explanations and definitions added, so that it can be used as a graduate level textbook. What this book is about Data processing. In many real-life situations, we are interested in the value of a physical quantity y that is diflicult (or even impossible) to measure directly. For example, it is impossible to directly measure the amount of oil in an oil field or a distance to a star. Since we cannot measure such quantities directly, we measure them indirectly, by measuring some other quantities Xi and using the known relation between y and Xi'S to reconstruct y. The algorithm that transforms the results Xi of measuring Xi into an estimate fj for y is called data processing Mathematics Information theory Computer science / Mathematics Mathematical optimization Computational Mathematics and Numerical Analysis Theory of Computation Optimization Mathematical Modeling and Industrial Mathematics Applications of Mathematics Informatik Mathematik Berechnungskomplexität (DE-588)4134751-1 gnd rswk-swf Bereichsschätzung (DE-588)4140553-5 gnd rswk-swf Bereichsschätzung (DE-588)4140553-5 s Berechnungskomplexität (DE-588)4134751-1 s 1\p DE-604 Lakeyev, Anatoly Sonstige oth Rohn, Jiří Sonstige oth Kahl, Patrick Sonstige oth Applied Optimization 10 (DE-604)BV010841718 10 https://doi.org/10.1007/978-1-4757-2793-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kreinovich, Vladik Computational Complexity and Feasibility of Data Processing and Interval Computations Applied Optimization Mathematics Information theory Computer science / Mathematics Mathematical optimization Computational Mathematics and Numerical Analysis Theory of Computation Optimization Mathematical Modeling and Industrial Mathematics Applications of Mathematics Informatik Mathematik Berechnungskomplexität (DE-588)4134751-1 gnd Bereichsschätzung (DE-588)4140553-5 gnd |
subject_GND | (DE-588)4134751-1 (DE-588)4140553-5 |
title | Computational Complexity and Feasibility of Data Processing and Interval Computations |
title_auth | Computational Complexity and Feasibility of Data Processing and Interval Computations |
title_exact_search | Computational Complexity and Feasibility of Data Processing and Interval Computations |
title_full | Computational Complexity and Feasibility of Data Processing and Interval Computations by Vladik Kreinovich, Anatoly Lakeyev, Jiří Rohn, Patrick Kahl |
title_fullStr | Computational Complexity and Feasibility of Data Processing and Interval Computations by Vladik Kreinovich, Anatoly Lakeyev, Jiří Rohn, Patrick Kahl |
title_full_unstemmed | Computational Complexity and Feasibility of Data Processing and Interval Computations by Vladik Kreinovich, Anatoly Lakeyev, Jiří Rohn, Patrick Kahl |
title_short | Computational Complexity and Feasibility of Data Processing and Interval Computations |
title_sort | computational complexity and feasibility of data processing and interval computations |
topic | Mathematics Information theory Computer science / Mathematics Mathematical optimization Computational Mathematics and Numerical Analysis Theory of Computation Optimization Mathematical Modeling and Industrial Mathematics Applications of Mathematics Informatik Mathematik Berechnungskomplexität (DE-588)4134751-1 gnd Bereichsschätzung (DE-588)4140553-5 gnd |
topic_facet | Mathematics Information theory Computer science / Mathematics Mathematical optimization Computational Mathematics and Numerical Analysis Theory of Computation Optimization Mathematical Modeling and Industrial Mathematics Applications of Mathematics Informatik Mathematik Berechnungskomplexität Bereichsschätzung |
url | https://doi.org/10.1007/978-1-4757-2793-7 |
volume_link | (DE-604)BV010841718 |
work_keys_str_mv | AT kreinovichvladik computationalcomplexityandfeasibilityofdataprocessingandintervalcomputations AT lakeyevanatoly computationalcomplexityandfeasibilityofdataprocessingandintervalcomputations AT rohnjiri computationalcomplexityandfeasibilityofdataprocessingandintervalcomputations AT kahlpatrick computationalcomplexityandfeasibilityofdataprocessingandintervalcomputations |