The Quadratic Assignment Problem: Theory and Algorithms
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1998
|
Schriftenreihe: | Combinatorial Optimization
1 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The quadratic assignment problem (QAP) was introduced in 1957 by Koopmans and Beckmann to model a plant location problem. Since then the QAP has been object of numerous investigations by mathematicians, computers scientists, operations researchers and practitioners. Nowadays the QAP is widely considered as a classical combinatorial optimization problem which is (still) attractive from many points of view. In our opinion there are at last three main reasons which make the QAP a popular problem in combinatorial optimization. First, the number of real life problems which are mathematically modeled by QAPs has been continuously increasing and the variety of the fields they belong to is astonishing. To recall just a restricted number among the applications of the QAP let us mention placement problems, scheduling, manufacturing, VLSI design, statistical data analysis, and parallel and distributed computing. Secondly, a number of other well known combinatorial optimization problems can be formulated as QAPs. Typical examples are the traveling salesman problem and a large number of optimization problems in graphs such as the maximum clique problem, the graph partitioning problem and the minimum feedback arc set problem. Finally, from a computational point of view the QAP is a very difficult problem. The QAP is not only NP-hard and - hard to approximate, but it is also practically intractable: it is generally considered as impossible to solve (to optimality) QAP instances of size larger than 20 within reasonable time limits |
Beschreibung: | 1 Online-Ressource (XV, 287 p) |
ISBN: | 9781475727876 9781441947864 |
ISSN: | 1388-3011 |
DOI: | 10.1007/978-1-4757-2787-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421382 | ||
003 | DE-604 | ||
005 | 20180110 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9781475727876 |c Online |9 978-1-4757-2787-6 | ||
020 | |a 9781441947864 |c Print |9 978-1-4419-4786-4 | ||
024 | 7 | |a 10.1007/978-1-4757-2787-6 |2 doi | |
035 | |a (OCoLC)863929863 | ||
035 | |a (DE-599)BVBBV042421382 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.6 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Çela, Eranda |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Quadratic Assignment Problem |b Theory and Algorithms |c by Eranda Çela |
264 | 1 | |a Boston, MA |b Springer US |c 1998 | |
300 | |a 1 Online-Ressource (XV, 287 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Combinatorial Optimization |v 1 |x 1388-3011 | |
500 | |a The quadratic assignment problem (QAP) was introduced in 1957 by Koopmans and Beckmann to model a plant location problem. Since then the QAP has been object of numerous investigations by mathematicians, computers scientists, operations researchers and practitioners. Nowadays the QAP is widely considered as a classical combinatorial optimization problem which is (still) attractive from many points of view. In our opinion there are at last three main reasons which make the QAP a popular problem in combinatorial optimization. First, the number of real life problems which are mathematically modeled by QAPs has been continuously increasing and the variety of the fields they belong to is astonishing. To recall just a restricted number among the applications of the QAP let us mention placement problems, scheduling, manufacturing, VLSI design, statistical data analysis, and parallel and distributed computing. Secondly, a number of other well known combinatorial optimization problems can be formulated as QAPs. Typical examples are the traveling salesman problem and a large number of optimization problems in graphs such as the maximum clique problem, the graph partitioning problem and the minimum feedback arc set problem. Finally, from a computational point of view the QAP is a very difficult problem. The QAP is not only NP-hard and - hard to approximate, but it is also practically intractable: it is generally considered as impossible to solve (to optimality) QAP instances of size larger than 20 within reasonable time limits | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Information theory | |
650 | 4 | |a Computational complexity | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Optimization | |
650 | 4 | |a Theory of Computation | |
650 | 4 | |a Discrete Mathematics in Computer Science | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Quadratisches Zuordnungsproblem |0 (DE-588)4621707-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quadratische Optimierung |0 (DE-588)4130555-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quadratische Optimierung |0 (DE-588)4130555-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Quadratisches Zuordnungsproblem |0 (DE-588)4621707-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
830 | 0 | |a Combinatorial Optimization |v 1 |w (DE-604)BV035421090 |9 1 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-2787-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856799 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094369443840 |
---|---|
any_adam_object | |
author | Çela, Eranda |
author_facet | Çela, Eranda |
author_role | aut |
author_sort | Çela, Eranda |
author_variant | e ç eç |
building | Verbundindex |
bvnumber | BV042421382 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863929863 (DE-599)BVBBV042421382 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-2787-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03645nmm a2200589zcb4500</leader><controlfield tag="001">BV042421382</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180110 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475727876</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-2787-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441947864</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-4786-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-2787-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863929863</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421382</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Çela, Eranda</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Quadratic Assignment Problem</subfield><subfield code="b">Theory and Algorithms</subfield><subfield code="c">by Eranda Çela</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 287 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Combinatorial Optimization</subfield><subfield code="v">1</subfield><subfield code="x">1388-3011</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The quadratic assignment problem (QAP) was introduced in 1957 by Koopmans and Beckmann to model a plant location problem. Since then the QAP has been object of numerous investigations by mathematicians, computers scientists, operations researchers and practitioners. Nowadays the QAP is widely considered as a classical combinatorial optimization problem which is (still) attractive from many points of view. In our opinion there are at last three main reasons which make the QAP a popular problem in combinatorial optimization. First, the number of real life problems which are mathematically modeled by QAPs has been continuously increasing and the variety of the fields they belong to is astonishing. To recall just a restricted number among the applications of the QAP let us mention placement problems, scheduling, manufacturing, VLSI design, statistical data analysis, and parallel and distributed computing. Secondly, a number of other well known combinatorial optimization problems can be formulated as QAPs. Typical examples are the traveling salesman problem and a large number of optimization problems in graphs such as the maximum clique problem, the graph partitioning problem and the minimum feedback arc set problem. Finally, from a computational point of view the QAP is a very difficult problem. The QAP is not only NP-hard and - hard to approximate, but it is also practically intractable: it is generally considered as impossible to solve (to optimality) QAP instances of size larger than 20 within reasonable time limits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory of Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete Mathematics in Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quadratisches Zuordnungsproblem</subfield><subfield code="0">(DE-588)4621707-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quadratische Optimierung</subfield><subfield code="0">(DE-588)4130555-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quadratische Optimierung</subfield><subfield code="0">(DE-588)4130555-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quadratisches Zuordnungsproblem</subfield><subfield code="0">(DE-588)4621707-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Combinatorial Optimization</subfield><subfield code="v">1</subfield><subfield code="w">(DE-604)BV035421090</subfield><subfield code="9">1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-2787-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856799</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421382 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781475727876 9781441947864 |
issn | 1388-3011 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856799 |
oclc_num | 863929863 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 287 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer US |
record_format | marc |
series | Combinatorial Optimization |
series2 | Combinatorial Optimization |
spelling | Çela, Eranda Verfasser aut The Quadratic Assignment Problem Theory and Algorithms by Eranda Çela Boston, MA Springer US 1998 1 Online-Ressource (XV, 287 p) txt rdacontent c rdamedia cr rdacarrier Combinatorial Optimization 1 1388-3011 The quadratic assignment problem (QAP) was introduced in 1957 by Koopmans and Beckmann to model a plant location problem. Since then the QAP has been object of numerous investigations by mathematicians, computers scientists, operations researchers and practitioners. Nowadays the QAP is widely considered as a classical combinatorial optimization problem which is (still) attractive from many points of view. In our opinion there are at last three main reasons which make the QAP a popular problem in combinatorial optimization. First, the number of real life problems which are mathematically modeled by QAPs has been continuously increasing and the variety of the fields they belong to is astonishing. To recall just a restricted number among the applications of the QAP let us mention placement problems, scheduling, manufacturing, VLSI design, statistical data analysis, and parallel and distributed computing. Secondly, a number of other well known combinatorial optimization problems can be formulated as QAPs. Typical examples are the traveling salesman problem and a large number of optimization problems in graphs such as the maximum clique problem, the graph partitioning problem and the minimum feedback arc set problem. Finally, from a computational point of view the QAP is a very difficult problem. The QAP is not only NP-hard and - hard to approximate, but it is also practically intractable: it is generally considered as impossible to solve (to optimality) QAP instances of size larger than 20 within reasonable time limits Mathematics Information theory Computational complexity Algorithms Combinatorics Mathematical optimization Optimization Theory of Computation Discrete Mathematics in Computer Science Mathematik Quadratisches Zuordnungsproblem (DE-588)4621707-1 gnd rswk-swf Quadratische Optimierung (DE-588)4130555-3 gnd rswk-swf Quadratische Optimierung (DE-588)4130555-3 s 1\p DE-604 Quadratisches Zuordnungsproblem (DE-588)4621707-1 s 2\p DE-604 Combinatorial Optimization 1 (DE-604)BV035421090 1 https://doi.org/10.1007/978-1-4757-2787-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Çela, Eranda The Quadratic Assignment Problem Theory and Algorithms Combinatorial Optimization Mathematics Information theory Computational complexity Algorithms Combinatorics Mathematical optimization Optimization Theory of Computation Discrete Mathematics in Computer Science Mathematik Quadratisches Zuordnungsproblem (DE-588)4621707-1 gnd Quadratische Optimierung (DE-588)4130555-3 gnd |
subject_GND | (DE-588)4621707-1 (DE-588)4130555-3 |
title | The Quadratic Assignment Problem Theory and Algorithms |
title_auth | The Quadratic Assignment Problem Theory and Algorithms |
title_exact_search | The Quadratic Assignment Problem Theory and Algorithms |
title_full | The Quadratic Assignment Problem Theory and Algorithms by Eranda Çela |
title_fullStr | The Quadratic Assignment Problem Theory and Algorithms by Eranda Çela |
title_full_unstemmed | The Quadratic Assignment Problem Theory and Algorithms by Eranda Çela |
title_short | The Quadratic Assignment Problem |
title_sort | the quadratic assignment problem theory and algorithms |
title_sub | Theory and Algorithms |
topic | Mathematics Information theory Computational complexity Algorithms Combinatorics Mathematical optimization Optimization Theory of Computation Discrete Mathematics in Computer Science Mathematik Quadratisches Zuordnungsproblem (DE-588)4621707-1 gnd Quadratische Optimierung (DE-588)4130555-3 gnd |
topic_facet | Mathematics Information theory Computational complexity Algorithms Combinatorics Mathematical optimization Optimization Theory of Computation Discrete Mathematics in Computer Science Mathematik Quadratisches Zuordnungsproblem Quadratische Optimierung |
url | https://doi.org/10.1007/978-1-4757-2787-6 |
volume_link | (DE-604)BV035421090 |
work_keys_str_mv | AT celaeranda thequadraticassignmentproblemtheoryandalgorithms |