Topology, Geometry, and Gauge Fields: Foundations
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1997
|
Schriftenreihe: | Texts in Applied Mathematics
25 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high levelof excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface In Egypt, geometry was created to measure the land. Similar motivations, on a somewhat larger scale, led Gauss to the intrinsic differential geometry of surfaces in space. Newton created the calculus to study the motion of physical objects (apples, planets, etc.) and Poincare was similarly impelled toward his deep and far-reaching topological view of dynamical systems |
Beschreibung: | 1 Online-Ressource (XVIII, 396 p) |
ISBN: | 9781475727425 9781475727449 |
ISSN: | 0939-2475 |
DOI: | 10.1007/978-1-4757-2742-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421378 | ||
003 | DE-604 | ||
005 | 20170919 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9781475727425 |c Online |9 978-1-4757-2742-5 | ||
020 | |a 9781475727449 |c Print |9 978-1-4757-2744-9 | ||
024 | 7 | |a 10.1007/978-1-4757-2742-5 |2 doi | |
035 | |a (OCoLC)863988272 | ||
035 | |a (DE-599)BVBBV042421378 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Naber, Gregory L. |d 1948- |e Verfasser |0 (DE-588)113221207 |4 aut | |
245 | 1 | 0 | |a Topology, Geometry, and Gauge Fields |b Foundations |c by Gregory L. Naber |
264 | 1 | |a New York, NY |b Springer New York |c 1997 | |
300 | |a 1 Online-Ressource (XVIII, 396 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Texts in Applied Mathematics |v 25 |x 0939-2475 | |
500 | |a Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high levelof excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface In Egypt, geometry was created to measure the land. Similar motivations, on a somewhat larger scale, led Gauss to the intrinsic differential geometry of surfaces in space. Newton created the calculus to study the motion of physical objects (apples, planets, etc.) and Poincare was similarly impelled toward his deep and far-reaching topological view of dynamical systems | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Topology | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Eichtheorie |0 (DE-588)4122125-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eichfeld |0 (DE-588)4328765-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Eichtheorie |0 (DE-588)4122125-4 |D s |
689 | 0 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | 2 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Eichfeld |0 (DE-588)4328765-7 |D s |
689 | 1 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 1 | 2 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Eichtheorie |0 (DE-588)4122125-4 |D s |
689 | 2 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 2 | 2 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
830 | 0 | |a Texts in Applied Mathematics |v 25 |w (DE-604)BV002476038 |9 25 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-2742-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856795 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094370492416 |
---|---|
any_adam_object | |
author | Naber, Gregory L. 1948- |
author_GND | (DE-588)113221207 |
author_facet | Naber, Gregory L. 1948- |
author_role | aut |
author_sort | Naber, Gregory L. 1948- |
author_variant | g l n gl gln |
building | Verbundindex |
bvnumber | BV042421378 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863988272 (DE-599)BVBBV042421378 |
dewey-full | 514 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514 |
dewey-search | 514 |
dewey-sort | 3514 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-2742-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03929nmm a2200661zcb4500</leader><controlfield tag="001">BV042421378</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170919 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475727425</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-2742-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475727449</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4757-2744-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-2742-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863988272</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421378</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Naber, Gregory L.</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113221207</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topology, Geometry, and Gauge Fields</subfield><subfield code="b">Foundations</subfield><subfield code="c">by Gregory L. Naber</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 396 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Texts in Applied Mathematics</subfield><subfield code="v">25</subfield><subfield code="x">0939-2475</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high levelof excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface In Egypt, geometry was created to measure the land. Similar motivations, on a somewhat larger scale, led Gauss to the intrinsic differential geometry of surfaces in space. Newton created the calculus to study the motion of physical objects (apples, planets, etc.) and Poincare was similarly impelled toward his deep and far-reaching topological view of dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eichfeld</subfield><subfield code="0">(DE-588)4328765-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Eichfeld</subfield><subfield code="0">(DE-588)4328765-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Texts in Applied Mathematics</subfield><subfield code="v">25</subfield><subfield code="w">(DE-604)BV002476038</subfield><subfield code="9">25</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-2742-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856795</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421378 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781475727425 9781475727449 |
issn | 0939-2475 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856795 |
oclc_num | 863988272 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 396 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer New York |
record_format | marc |
series | Texts in Applied Mathematics |
series2 | Texts in Applied Mathematics |
spelling | Naber, Gregory L. 1948- Verfasser (DE-588)113221207 aut Topology, Geometry, and Gauge Fields Foundations by Gregory L. Naber New York, NY Springer New York 1997 1 Online-Ressource (XVIII, 396 p) txt rdacontent c rdamedia cr rdacarrier Texts in Applied Mathematics 25 0939-2475 Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high levelof excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface In Egypt, geometry was created to measure the land. Similar motivations, on a somewhat larger scale, led Gauss to the intrinsic differential geometry of surfaces in space. Newton created the calculus to study the motion of physical objects (apples, planets, etc.) and Poincare was similarly impelled toward his deep and far-reaching topological view of dynamical systems Mathematics Geometry Topology Mathematik Eichtheorie (DE-588)4122125-4 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Eichfeld (DE-588)4328765-7 gnd rswk-swf Eichtheorie (DE-588)4122125-4 s Mathematische Physik (DE-588)4037952-8 s Geometrie (DE-588)4020236-7 s 1\p DE-604 Eichfeld (DE-588)4328765-7 s Topologie (DE-588)4060425-1 s 2\p DE-604 3\p DE-604 Texts in Applied Mathematics 25 (DE-604)BV002476038 25 https://doi.org/10.1007/978-1-4757-2742-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Naber, Gregory L. 1948- Topology, Geometry, and Gauge Fields Foundations Texts in Applied Mathematics Mathematics Geometry Topology Mathematik Eichtheorie (DE-588)4122125-4 gnd Geometrie (DE-588)4020236-7 gnd Topologie (DE-588)4060425-1 gnd Mathematische Physik (DE-588)4037952-8 gnd Eichfeld (DE-588)4328765-7 gnd |
subject_GND | (DE-588)4122125-4 (DE-588)4020236-7 (DE-588)4060425-1 (DE-588)4037952-8 (DE-588)4328765-7 |
title | Topology, Geometry, and Gauge Fields Foundations |
title_auth | Topology, Geometry, and Gauge Fields Foundations |
title_exact_search | Topology, Geometry, and Gauge Fields Foundations |
title_full | Topology, Geometry, and Gauge Fields Foundations by Gregory L. Naber |
title_fullStr | Topology, Geometry, and Gauge Fields Foundations by Gregory L. Naber |
title_full_unstemmed | Topology, Geometry, and Gauge Fields Foundations by Gregory L. Naber |
title_short | Topology, Geometry, and Gauge Fields |
title_sort | topology geometry and gauge fields foundations |
title_sub | Foundations |
topic | Mathematics Geometry Topology Mathematik Eichtheorie (DE-588)4122125-4 gnd Geometrie (DE-588)4020236-7 gnd Topologie (DE-588)4060425-1 gnd Mathematische Physik (DE-588)4037952-8 gnd Eichfeld (DE-588)4328765-7 gnd |
topic_facet | Mathematics Geometry Topology Mathematik Eichtheorie Geometrie Topologie Mathematische Physik Eichfeld |
url | https://doi.org/10.1007/978-1-4757-2742-5 |
volume_link | (DE-604)BV002476038 |
work_keys_str_mv | AT nabergregoryl topologygeometryandgaugefieldsfoundations |