Robust Discrete Optimization and Its Applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1997
|
Schriftenreihe: | Nonconvex Optimization and Its Applications
14 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book deals with decision making in environments of significant data uncertainty, with particular emphasis on operations and production management applications. For such environments, we suggest the use of the robustness approach to decision making, which assumes inadequate knowledge of the decision maker about the random state of nature and develops a decision that hedges against the worst contingency that may arise. The main motivating factors for a decision maker to use the robustness approach are: - It does not ignore uncertainty and takes a proactive step in response to the fact that forecasted values of uncertain parameters will not occur in most environments; - It applies to decisions of unique, non-repetitive nature, which are common in many fast and dynamically changing environments; - It accounts for the risk averse nature of decision makers; and - It recognizes that even though decision environments are fraught with data uncertainties, decisions are evaluated ex post with the realized data. For all of the above reasons, robust decisions are dear to the heart of operational decision makers. This book takes a giant first step in presenting decision support tools and solution methods for generating robust decisions in a variety of interesting application environments. Robust Discrete Optimization is a comprehensive mathematical programming framework for robust decision making |
Beschreibung: | 1 Online-Ressource (XVI, 358 p) |
ISBN: | 9781475726206 9781441947642 |
ISSN: | 1571-568X |
DOI: | 10.1007/978-1-4757-2620-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421365 | ||
003 | DE-604 | ||
005 | 20180205 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9781475726206 |c Online |9 978-1-4757-2620-6 | ||
020 | |a 9781441947642 |c Print |9 978-1-4419-4764-2 | ||
024 | 7 | |a 10.1007/978-1-4757-2620-6 |2 doi | |
035 | |a (OCoLC)1048350340 | ||
035 | |a (DE-599)BVBBV042421365 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.6 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kouvelis, Panos |e Verfasser |4 aut | |
245 | 1 | 0 | |a Robust Discrete Optimization and Its Applications |c by Panos Kouvelis, Gang Yu |
264 | 1 | |a Boston, MA |b Springer US |c 1997 | |
300 | |a 1 Online-Ressource (XVI, 358 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Nonconvex Optimization and Its Applications |v 14 |x 1571-568X | |
500 | |a This book deals with decision making in environments of significant data uncertainty, with particular emphasis on operations and production management applications. For such environments, we suggest the use of the robustness approach to decision making, which assumes inadequate knowledge of the decision maker about the random state of nature and develops a decision that hedges against the worst contingency that may arise. The main motivating factors for a decision maker to use the robustness approach are: - It does not ignore uncertainty and takes a proactive step in response to the fact that forecasted values of uncertain parameters will not occur in most environments; - It applies to decisions of unique, non-repetitive nature, which are common in many fast and dynamically changing environments; - It accounts for the risk averse nature of decision makers; and - It recognizes that even though decision environments are fraught with data uncertainties, decisions are evaluated ex post with the realized data. For all of the above reasons, robust decisions are dear to the heart of operational decision makers. This book takes a giant first step in presenting decision support tools and solution methods for generating robust decisions in a variety of interesting application environments. Robust Discrete Optimization is a comprehensive mathematical programming framework for robust decision making | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Operations research | |
650 | 4 | |a Optimization | |
650 | 4 | |a Operation Research/Decision Theory | |
650 | 4 | |a Production/Logistics/Supply Chain Management | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Diskrete Optimierung |0 (DE-588)4150179-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entscheidung bei Unsicherheit |0 (DE-588)4070864-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Diskrete Optimierung |0 (DE-588)4150179-2 |D s |
689 | 0 | 1 | |a Entscheidung bei Unsicherheit |0 (DE-588)4070864-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Yu, Gang |e Sonstige |4 oth | |
830 | 0 | |a Nonconvex Optimization and Its Applications |v 14 |w (DE-604)BV010085908 |9 14 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-2620-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856782 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094318063616 |
---|---|
any_adam_object | |
author | Kouvelis, Panos |
author_facet | Kouvelis, Panos |
author_role | aut |
author_sort | Kouvelis, Panos |
author_variant | p k pk |
building | Verbundindex |
bvnumber | BV042421365 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1048350340 (DE-599)BVBBV042421365 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-2620-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03418nmm a2200553zcb4500</leader><controlfield tag="001">BV042421365</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180205 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475726206</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-2620-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441947642</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-4764-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-2620-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1048350340</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421365</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kouvelis, Panos</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robust Discrete Optimization and Its Applications</subfield><subfield code="c">by Panos Kouvelis, Gang Yu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 358 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Nonconvex Optimization and Its Applications</subfield><subfield code="v">14</subfield><subfield code="x">1571-568X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book deals with decision making in environments of significant data uncertainty, with particular emphasis on operations and production management applications. For such environments, we suggest the use of the robustness approach to decision making, which assumes inadequate knowledge of the decision maker about the random state of nature and develops a decision that hedges against the worst contingency that may arise. The main motivating factors for a decision maker to use the robustness approach are: - It does not ignore uncertainty and takes a proactive step in response to the fact that forecasted values of uncertain parameters will not occur in most environments; - It applies to decisions of unique, non-repetitive nature, which are common in many fast and dynamically changing environments; - It accounts for the risk averse nature of decision makers; and - It recognizes that even though decision environments are fraught with data uncertainties, decisions are evaluated ex post with the realized data. For all of the above reasons, robust decisions are dear to the heart of operational decision makers. This book takes a giant first step in presenting decision support tools and solution methods for generating robust decisions in a variety of interesting application environments. Robust Discrete Optimization is a comprehensive mathematical programming framework for robust decision making</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operation Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Production/Logistics/Supply Chain Management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskrete Optimierung</subfield><subfield code="0">(DE-588)4150179-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entscheidung bei Unsicherheit</subfield><subfield code="0">(DE-588)4070864-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diskrete Optimierung</subfield><subfield code="0">(DE-588)4150179-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Entscheidung bei Unsicherheit</subfield><subfield code="0">(DE-588)4070864-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Gang</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Nonconvex Optimization and Its Applications</subfield><subfield code="v">14</subfield><subfield code="w">(DE-604)BV010085908</subfield><subfield code="9">14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-2620-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856782</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421365 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781475726206 9781441947642 |
issn | 1571-568X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856782 |
oclc_num | 1048350340 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 358 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer US |
record_format | marc |
series | Nonconvex Optimization and Its Applications |
series2 | Nonconvex Optimization and Its Applications |
spelling | Kouvelis, Panos Verfasser aut Robust Discrete Optimization and Its Applications by Panos Kouvelis, Gang Yu Boston, MA Springer US 1997 1 Online-Ressource (XVI, 358 p) txt rdacontent c rdamedia cr rdacarrier Nonconvex Optimization and Its Applications 14 1571-568X This book deals with decision making in environments of significant data uncertainty, with particular emphasis on operations and production management applications. For such environments, we suggest the use of the robustness approach to decision making, which assumes inadequate knowledge of the decision maker about the random state of nature and develops a decision that hedges against the worst contingency that may arise. The main motivating factors for a decision maker to use the robustness approach are: - It does not ignore uncertainty and takes a proactive step in response to the fact that forecasted values of uncertain parameters will not occur in most environments; - It applies to decisions of unique, non-repetitive nature, which are common in many fast and dynamically changing environments; - It accounts for the risk averse nature of decision makers; and - It recognizes that even though decision environments are fraught with data uncertainties, decisions are evaluated ex post with the realized data. For all of the above reasons, robust decisions are dear to the heart of operational decision makers. This book takes a giant first step in presenting decision support tools and solution methods for generating robust decisions in a variety of interesting application environments. Robust Discrete Optimization is a comprehensive mathematical programming framework for robust decision making Mathematics Algorithms Mathematical optimization Operations research Optimization Operation Research/Decision Theory Production/Logistics/Supply Chain Management Mathematik Diskrete Optimierung (DE-588)4150179-2 gnd rswk-swf Entscheidung bei Unsicherheit (DE-588)4070864-0 gnd rswk-swf Diskrete Optimierung (DE-588)4150179-2 s Entscheidung bei Unsicherheit (DE-588)4070864-0 s 1\p DE-604 Yu, Gang Sonstige oth Nonconvex Optimization and Its Applications 14 (DE-604)BV010085908 14 https://doi.org/10.1007/978-1-4757-2620-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kouvelis, Panos Robust Discrete Optimization and Its Applications Nonconvex Optimization and Its Applications Mathematics Algorithms Mathematical optimization Operations research Optimization Operation Research/Decision Theory Production/Logistics/Supply Chain Management Mathematik Diskrete Optimierung (DE-588)4150179-2 gnd Entscheidung bei Unsicherheit (DE-588)4070864-0 gnd |
subject_GND | (DE-588)4150179-2 (DE-588)4070864-0 |
title | Robust Discrete Optimization and Its Applications |
title_auth | Robust Discrete Optimization and Its Applications |
title_exact_search | Robust Discrete Optimization and Its Applications |
title_full | Robust Discrete Optimization and Its Applications by Panos Kouvelis, Gang Yu |
title_fullStr | Robust Discrete Optimization and Its Applications by Panos Kouvelis, Gang Yu |
title_full_unstemmed | Robust Discrete Optimization and Its Applications by Panos Kouvelis, Gang Yu |
title_short | Robust Discrete Optimization and Its Applications |
title_sort | robust discrete optimization and its applications |
topic | Mathematics Algorithms Mathematical optimization Operations research Optimization Operation Research/Decision Theory Production/Logistics/Supply Chain Management Mathematik Diskrete Optimierung (DE-588)4150179-2 gnd Entscheidung bei Unsicherheit (DE-588)4070864-0 gnd |
topic_facet | Mathematics Algorithms Mathematical optimization Operations research Optimization Operation Research/Decision Theory Production/Logistics/Supply Chain Management Mathematik Diskrete Optimierung Entscheidung bei Unsicherheit |
url | https://doi.org/10.1007/978-1-4757-2620-6 |
volume_link | (DE-604)BV010085908 |
work_keys_str_mv | AT kouvelispanos robustdiscreteoptimizationanditsapplications AT yugang robustdiscreteoptimizationanditsapplications |