Symplectic Geometry and Secondary Characteristic Classes:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1987
|
Schriftenreihe: | Progress in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The present work grew out of a study of the Maslov class (e. g. (37]), which is a fundamental invariant in asymptotic analysis of partial differential equations of quantum physics. One of the many in terpretations of this class was given by F. Kamber and Ph. Tondeur (43], and it indicates that the Maslov class is a secondary characteristic class of a complex trivial vector bundle endowed with a real reduction of its structure group. (In the basic paper of V. I. Arnold about the Maslov class (2], it is also pointed out without details that the Maslov class is characteristic in the category of vector bundles mentioned pre viously. ) Accordingly, we wanted to study the whole range of secondary characteristic classes involved in this interpretation, and we gave a short description of the results in (83]. It turned out that a complete exposition of this theory was rather lengthy, and, moreover, I felt that many potential readers would have to use a lot of scattered references in order to find the necessary information from either symplectic geometry or the theory of the secondary characteristic classes. On the otherhand, both these subjects are of a much larger interest in differential geome try and topology, and in the applications to physical theories |
Beschreibung: | 1 Online-Ressource (IX, 216 p) |
ISBN: | 9781475719604 9781475719628 |
ISSN: | 0743-1643 |
DOI: | 10.1007/978-1-4757-1960-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421301 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1987 |||| o||u| ||||||eng d | ||
020 | |a 9781475719604 |c Online |9 978-1-4757-1960-4 | ||
020 | |a 9781475719628 |c Print |9 978-1-4757-1962-8 | ||
024 | 7 | |a 10.1007/978-1-4757-1960-4 |2 doi | |
035 | |a (OCoLC)864740547 | ||
035 | |a (DE-599)BVBBV042421301 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Vaisman, Izu |e Verfasser |4 aut | |
245 | 1 | 0 | |a Symplectic Geometry and Secondary Characteristic Classes |c by Izu Vaisman |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1987 | |
300 | |a 1 Online-Ressource (IX, 216 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |x 0743-1643 | |
500 | |a The present work grew out of a study of the Maslov class (e. g. (37]), which is a fundamental invariant in asymptotic analysis of partial differential equations of quantum physics. One of the many in terpretations of this class was given by F. Kamber and Ph. Tondeur (43], and it indicates that the Maslov class is a secondary characteristic class of a complex trivial vector bundle endowed with a real reduction of its structure group. (In the basic paper of V. I. Arnold about the Maslov class (2], it is also pointed out without details that the Maslov class is characteristic in the category of vector bundles mentioned pre viously. ) Accordingly, we wanted to study the whole range of secondary characteristic classes involved in this interpretation, and we gave a short description of the results in (83]. It turned out that a complete exposition of this theory was rather lengthy, and, moreover, I felt that many potential readers would have to use a lot of scattered references in order to find the necessary information from either symplectic geometry or the theory of the secondary characteristic classes. On the otherhand, both these subjects are of a much larger interest in differential geome try and topology, and in the applications to physical theories | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Geometry | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Maslov-Index |0 (DE-588)4169023-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Charakteristische Klasse |0 (DE-588)4194231-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |D s |
689 | 0 | 1 | |a Charakteristische Klasse |0 (DE-588)4194231-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Maslov-Index |0 (DE-588)4169023-0 |D s |
689 | 1 | 1 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-1960-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856718 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094202720256 |
---|---|
any_adam_object | |
author | Vaisman, Izu |
author_facet | Vaisman, Izu |
author_role | aut |
author_sort | Vaisman, Izu |
author_variant | i v iv |
building | Verbundindex |
bvnumber | BV042421301 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864740547 (DE-599)BVBBV042421301 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-1960-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03640nmm a2200661zc 4500</leader><controlfield tag="001">BV042421301</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475719604</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-1960-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475719628</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4757-1962-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-1960-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864740547</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421301</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vaisman, Izu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symplectic Geometry and Secondary Characteristic Classes</subfield><subfield code="c">by Izu Vaisman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 216 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="x">0743-1643</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The present work grew out of a study of the Maslov class (e. g. (37]), which is a fundamental invariant in asymptotic analysis of partial differential equations of quantum physics. One of the many in terpretations of this class was given by F. Kamber and Ph. Tondeur (43], and it indicates that the Maslov class is a secondary characteristic class of a complex trivial vector bundle endowed with a real reduction of its structure group. (In the basic paper of V. I. Arnold about the Maslov class (2], it is also pointed out without details that the Maslov class is characteristic in the category of vector bundles mentioned pre viously. ) Accordingly, we wanted to study the whole range of secondary characteristic classes involved in this interpretation, and we gave a short description of the results in (83]. It turned out that a complete exposition of this theory was rather lengthy, and, moreover, I felt that many potential readers would have to use a lot of scattered references in order to find the necessary information from either symplectic geometry or the theory of the secondary characteristic classes. On the otherhand, both these subjects are of a much larger interest in differential geome try and topology, and in the applications to physical theories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maslov-Index</subfield><subfield code="0">(DE-588)4169023-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Charakteristische Klasse</subfield><subfield code="0">(DE-588)4194231-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Charakteristische Klasse</subfield><subfield code="0">(DE-588)4194231-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Maslov-Index</subfield><subfield code="0">(DE-588)4169023-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-1960-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856718</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421301 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781475719604 9781475719628 |
issn | 0743-1643 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856718 |
oclc_num | 864740547 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 216 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Vaisman, Izu Verfasser aut Symplectic Geometry and Secondary Characteristic Classes by Izu Vaisman Boston, MA Birkhäuser Boston 1987 1 Online-Ressource (IX, 216 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 0743-1643 The present work grew out of a study of the Maslov class (e. g. (37]), which is a fundamental invariant in asymptotic analysis of partial differential equations of quantum physics. One of the many in terpretations of this class was given by F. Kamber and Ph. Tondeur (43], and it indicates that the Maslov class is a secondary characteristic class of a complex trivial vector bundle endowed with a real reduction of its structure group. (In the basic paper of V. I. Arnold about the Maslov class (2], it is also pointed out without details that the Maslov class is characteristic in the category of vector bundles mentioned pre viously. ) Accordingly, we wanted to study the whole range of secondary characteristic classes involved in this interpretation, and we gave a short description of the results in (83]. It turned out that a complete exposition of this theory was rather lengthy, and, moreover, I felt that many potential readers would have to use a lot of scattered references in order to find the necessary information from either symplectic geometry or the theory of the secondary characteristic classes. On the otherhand, both these subjects are of a much larger interest in differential geome try and topology, and in the applications to physical theories Mathematics Differential equations, partial Geometry Cell aggregation / Mathematics Quantum theory Mathematical physics Mechanics Mathematical Methods in Physics Partial Differential Equations Manifolds and Cell Complexes (incl. Diff.Topology) Quantum Physics Mathematik Mathematische Physik Quantentheorie Maslov-Index (DE-588)4169023-0 gnd rswk-swf Charakteristische Klasse (DE-588)4194231-0 gnd rswk-swf Symplektische Geometrie (DE-588)4194232-2 gnd rswk-swf Symplektische Geometrie (DE-588)4194232-2 s Charakteristische Klasse (DE-588)4194231-0 s 1\p DE-604 Maslov-Index (DE-588)4169023-0 s 2\p DE-604 https://doi.org/10.1007/978-1-4757-1960-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Vaisman, Izu Symplectic Geometry and Secondary Characteristic Classes Mathematics Differential equations, partial Geometry Cell aggregation / Mathematics Quantum theory Mathematical physics Mechanics Mathematical Methods in Physics Partial Differential Equations Manifolds and Cell Complexes (incl. Diff.Topology) Quantum Physics Mathematik Mathematische Physik Quantentheorie Maslov-Index (DE-588)4169023-0 gnd Charakteristische Klasse (DE-588)4194231-0 gnd Symplektische Geometrie (DE-588)4194232-2 gnd |
subject_GND | (DE-588)4169023-0 (DE-588)4194231-0 (DE-588)4194232-2 |
title | Symplectic Geometry and Secondary Characteristic Classes |
title_auth | Symplectic Geometry and Secondary Characteristic Classes |
title_exact_search | Symplectic Geometry and Secondary Characteristic Classes |
title_full | Symplectic Geometry and Secondary Characteristic Classes by Izu Vaisman |
title_fullStr | Symplectic Geometry and Secondary Characteristic Classes by Izu Vaisman |
title_full_unstemmed | Symplectic Geometry and Secondary Characteristic Classes by Izu Vaisman |
title_short | Symplectic Geometry and Secondary Characteristic Classes |
title_sort | symplectic geometry and secondary characteristic classes |
topic | Mathematics Differential equations, partial Geometry Cell aggregation / Mathematics Quantum theory Mathematical physics Mechanics Mathematical Methods in Physics Partial Differential Equations Manifolds and Cell Complexes (incl. Diff.Topology) Quantum Physics Mathematik Mathematische Physik Quantentheorie Maslov-Index (DE-588)4169023-0 gnd Charakteristische Klasse (DE-588)4194231-0 gnd Symplektische Geometrie (DE-588)4194232-2 gnd |
topic_facet | Mathematics Differential equations, partial Geometry Cell aggregation / Mathematics Quantum theory Mathematical physics Mechanics Mathematical Methods in Physics Partial Differential Equations Manifolds and Cell Complexes (incl. Diff.Topology) Quantum Physics Mathematik Mathematische Physik Quantentheorie Maslov-Index Charakteristische Klasse Symplektische Geometrie |
url | https://doi.org/10.1007/978-1-4757-1960-4 |
work_keys_str_mv | AT vaismanizu symplecticgeometryandsecondarycharacteristicclasses |