Undergraduate Analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1983
|
Schriftenreihe: | Undergraduate Texts in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The present volume is a text designed for a first course in analysis. Although it is logically self-contained, it presupposes the mathematical maturity acquired by students who will ordinarily have had two years of calculus. When used in this context, most of the first part can be omitted, or reviewed extremely rapidly, or left to the students to read by themselves. The course can proceed immediately into Part Two after covering Chapters o and 1. However, the techniques of Part One are precisely those which are not emphasized in elementary calculus courses, since they are regarded as too sophisticated. The context of a third-year course is the first time that they are given proper emphasis, and thus it is important that Part One be thoroughly mastered. Emphasis has shifted from computational aspects of calculus to theoretical aspects: proofs for theorems concerning continuous 2 functions; sketching curves like x e-X, x log x, xlix which are usually regarded as too difficult for the more elementary courses; and other similar matters |
Beschreibung: | 1 Online-Ressource (XIII, 546 p) |
ISBN: | 9781475718010 9781475718034 |
ISSN: | 0172-6056 |
DOI: | 10.1007/978-1-4757-1801-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421279 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1983 |||| o||u| ||||||eng d | ||
020 | |a 9781475718010 |c Online |9 978-1-4757-1801-0 | ||
020 | |a 9781475718034 |c Print |9 978-1-4757-1803-4 | ||
024 | 7 | |a 10.1007/978-1-4757-1801-0 |2 doi | |
035 | |a (OCoLC)863930619 | ||
035 | |a (DE-599)BVBBV042421279 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Lang, Serge |e Verfasser |4 aut | |
245 | 1 | 0 | |a Undergraduate Analysis |c by Serge Lang |
264 | 1 | |a New York, NY |b Springer New York |c 1983 | |
300 | |a 1 Online-Ressource (XIII, 546 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Undergraduate Texts in Mathematics |x 0172-6056 | |
500 | |a The present volume is a text designed for a first course in analysis. Although it is logically self-contained, it presupposes the mathematical maturity acquired by students who will ordinarily have had two years of calculus. When used in this context, most of the first part can be omitted, or reviewed extremely rapidly, or left to the students to read by themselves. The course can proceed immediately into Part Two after covering Chapters o and 1. However, the techniques of Part One are precisely those which are not emphasized in elementary calculus courses, since they are regarded as too sophisticated. The context of a third-year course is the first time that they are given proper emphasis, and thus it is important that Part One be thoroughly mastered. Emphasis has shifted from computational aspects of calculus to theoretical aspects: proofs for theorems concerning continuous 2 functions; sketching curves like x e-X, x log x, xlix which are usually regarded as too difficult for the more elementary courses; and other similar matters | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Katze |0 (DE-588)4030046-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Infinitesimalrechnung |0 (DE-588)4072798-1 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4006604-6 |a Bilderbuch |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4143389-0 |a Aufgabensammlung |2 gnd-content | |
655 | 7 | |8 3\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 0 | |8 4\p |5 DE-604 | |
689 | 1 | 0 | |a Katze |0 (DE-588)4030046-8 |D s |
689 | 1 | |8 5\p |5 DE-604 | |
689 | 2 | 0 | |a Infinitesimalrechnung |0 (DE-588)4072798-1 |D s |
689 | 2 | |8 6\p |5 DE-604 | |
689 | 3 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 3 | |8 7\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-1801-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856696 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 7\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094141902848 |
---|---|
any_adam_object | |
author | Lang, Serge |
author_facet | Lang, Serge |
author_role | aut |
author_sort | Lang, Serge |
author_variant | s l sl |
building | Verbundindex |
bvnumber | BV042421279 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863930619 (DE-599)BVBBV042421279 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-1801-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03660nmm a2200673zc 4500</leader><controlfield tag="001">BV042421279</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1983 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475718010</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-1801-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475718034</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4757-1803-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-1801-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863930619</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421279</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lang, Serge</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Undergraduate Analysis</subfield><subfield code="c">by Serge Lang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 546 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate Texts in Mathematics</subfield><subfield code="x">0172-6056</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The present volume is a text designed for a first course in analysis. Although it is logically self-contained, it presupposes the mathematical maturity acquired by students who will ordinarily have had two years of calculus. When used in this context, most of the first part can be omitted, or reviewed extremely rapidly, or left to the students to read by themselves. The course can proceed immediately into Part Two after covering Chapters o and 1. However, the techniques of Part One are precisely those which are not emphasized in elementary calculus courses, since they are regarded as too sophisticated. The context of a third-year course is the first time that they are given proper emphasis, and thus it is important that Part One be thoroughly mastered. Emphasis has shifted from computational aspects of calculus to theoretical aspects: proofs for theorems concerning continuous 2 functions; sketching curves like x e-X, x log x, xlix which are usually regarded as too difficult for the more elementary courses; and other similar matters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Katze</subfield><subfield code="0">(DE-588)4030046-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Infinitesimalrechnung</subfield><subfield code="0">(DE-588)4072798-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4006604-6</subfield><subfield code="a">Bilderbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4143389-0</subfield><subfield code="a">Aufgabensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">3\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Katze</subfield><subfield code="0">(DE-588)4030046-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Infinitesimalrechnung</subfield><subfield code="0">(DE-588)4072798-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-1801-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856696</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4006604-6 Bilderbuch gnd-content 2\p (DE-588)4143389-0 Aufgabensammlung gnd-content 3\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Bilderbuch Aufgabensammlung Lehrbuch |
id | DE-604.BV042421279 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781475718010 9781475718034 |
issn | 0172-6056 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856696 |
oclc_num | 863930619 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 546 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Springer New York |
record_format | marc |
series2 | Undergraduate Texts in Mathematics |
spelling | Lang, Serge Verfasser aut Undergraduate Analysis by Serge Lang New York, NY Springer New York 1983 1 Online-Ressource (XIII, 546 p) txt rdacontent c rdamedia cr rdacarrier Undergraduate Texts in Mathematics 0172-6056 The present volume is a text designed for a first course in analysis. Although it is logically self-contained, it presupposes the mathematical maturity acquired by students who will ordinarily have had two years of calculus. When used in this context, most of the first part can be omitted, or reviewed extremely rapidly, or left to the students to read by themselves. The course can proceed immediately into Part Two after covering Chapters o and 1. However, the techniques of Part One are precisely those which are not emphasized in elementary calculus courses, since they are regarded as too sophisticated. The context of a third-year course is the first time that they are given proper emphasis, and thus it is important that Part One be thoroughly mastered. Emphasis has shifted from computational aspects of calculus to theoretical aspects: proofs for theorems concerning continuous 2 functions; sketching curves like x e-X, x log x, xlix which are usually regarded as too difficult for the more elementary courses; and other similar matters Mathematics Global analysis (Mathematics) Analysis Mathematik Algebra (DE-588)4001156-2 gnd rswk-swf Katze (DE-588)4030046-8 gnd rswk-swf Analysis (DE-588)4001865-9 gnd rswk-swf Infinitesimalrechnung (DE-588)4072798-1 gnd rswk-swf 1\p (DE-588)4006604-6 Bilderbuch gnd-content 2\p (DE-588)4143389-0 Aufgabensammlung gnd-content 3\p (DE-588)4123623-3 Lehrbuch gnd-content Analysis (DE-588)4001865-9 s 4\p DE-604 Katze (DE-588)4030046-8 s 5\p DE-604 Infinitesimalrechnung (DE-588)4072798-1 s 6\p DE-604 Algebra (DE-588)4001156-2 s 7\p DE-604 https://doi.org/10.1007/978-1-4757-1801-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 7\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lang, Serge Undergraduate Analysis Mathematics Global analysis (Mathematics) Analysis Mathematik Algebra (DE-588)4001156-2 gnd Katze (DE-588)4030046-8 gnd Analysis (DE-588)4001865-9 gnd Infinitesimalrechnung (DE-588)4072798-1 gnd |
subject_GND | (DE-588)4001156-2 (DE-588)4030046-8 (DE-588)4001865-9 (DE-588)4072798-1 (DE-588)4006604-6 (DE-588)4143389-0 (DE-588)4123623-3 |
title | Undergraduate Analysis |
title_auth | Undergraduate Analysis |
title_exact_search | Undergraduate Analysis |
title_full | Undergraduate Analysis by Serge Lang |
title_fullStr | Undergraduate Analysis by Serge Lang |
title_full_unstemmed | Undergraduate Analysis by Serge Lang |
title_short | Undergraduate Analysis |
title_sort | undergraduate analysis |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Algebra (DE-588)4001156-2 gnd Katze (DE-588)4030046-8 gnd Analysis (DE-588)4001865-9 gnd Infinitesimalrechnung (DE-588)4072798-1 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Algebra Katze Infinitesimalrechnung Bilderbuch Aufgabensammlung Lehrbuch |
url | https://doi.org/10.1007/978-1-4757-1801-0 |
work_keys_str_mv | AT langserge undergraduateanalysis |