Vector Bundles on Complex Projective Spaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1980
|
Schriftenreihe: | Progress in Mathematics
3 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | These lecture notes are intended as an introduction to the methods of classification of holomorphic vector bundles over projective algebraic manifolds X. To be as concrete as possible we have mostly restricted ourselves to the case X = Fn. According to Serre (GAGA) the classification of holomorphic vector bundles is equivalent to the classification of algebraic vector bundles. Here we have used almost exclusively the language of analytic geometry. The book is intended for students who have a basic knowledge of analytic and (or) algebraic geometry. Some fundamental results from these fields are summarized at the beginning. One of the authors gave a survey in the Seminaire Bourbaki 1978 on the current state of the classification of holomorphic vector bundles overFn. This lecture then served as the basis for a course of lectures in Gottingen in the Winter Semester 78/79. The present work is an extended and up-dated exposition of that course. Because of the introductory nature of this book we have had to leave out some difficult topics such as the restriction theorem of Barth. As compensation we have appended to each section a paragraph in which historical remarks are made, further results indicated and unsolved problems presented. The book is divided into two chapters. Each chapter is subdivided into several sections which in turn are made up of a number of paragraphs. Each section is preceeded by a short description of iv its contents |
Beschreibung: | 1 Online-Ressource (VII, 389 p) |
ISBN: | 9781475714609 9781475714623 |
ISSN: | 0743-1643 |
DOI: | 10.1007/978-1-4757-1460-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421263 | ||
003 | DE-604 | ||
005 | 20170925 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1980 |||| o||u| ||||||eng d | ||
020 | |a 9781475714609 |c Online |9 978-1-4757-1460-9 | ||
020 | |a 9781475714623 |c Print |9 978-1-4757-1462-3 | ||
024 | 7 | |a 10.1007/978-1-4757-1460-9 |2 doi | |
035 | |a (OCoLC)1165455066 | ||
035 | |a (DE-599)BVBBV042421263 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Okonek, Christian |e Verfasser |4 aut | |
245 | 1 | 0 | |a Vector Bundles on Complex Projective Spaces |c by Christian Okonek, Michael Schneider, Heinz Spindler |
264 | 1 | |a Boston, MA |b Springer US |c 1980 | |
300 | |a 1 Online-Ressource (VII, 389 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in Mathematics |v 3 |x 0743-1643 | |
500 | |a These lecture notes are intended as an introduction to the methods of classification of holomorphic vector bundles over projective algebraic manifolds X. To be as concrete as possible we have mostly restricted ourselves to the case X = Fn. According to Serre (GAGA) the classification of holomorphic vector bundles is equivalent to the classification of algebraic vector bundles. Here we have used almost exclusively the language of analytic geometry. The book is intended for students who have a basic knowledge of analytic and (or) algebraic geometry. Some fundamental results from these fields are summarized at the beginning. One of the authors gave a survey in the Seminaire Bourbaki 1978 on the current state of the classification of holomorphic vector bundles overFn. This lecture then served as the basis for a course of lectures in Gottingen in the Winter Semester 78/79. The present work is an extended and up-dated exposition of that course. Because of the introductory nature of this book we have had to leave out some difficult topics such as the restriction theorem of Barth. As compensation we have appended to each section a paragraph in which historical remarks are made, further results indicated and unsolved problems presented. The book is divided into two chapters. Each chapter is subdivided into several sections which in turn are made up of a number of paragraphs. Each section is preceeded by a short description of iv its contents | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Statistics | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Projektiver Raum |0 (DE-588)4175893-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Holomorphes Vektorraumbündel |0 (DE-588)4160483-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Projektive Geometrie |0 (DE-588)4047436-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vektorraumbündel |0 (DE-588)4187470-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Klassifikation |0 (DE-588)4030958-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Holomorphes Vektorraumbündel |0 (DE-588)4160483-0 |D s |
689 | 0 | 1 | |a Klassifikation |0 (DE-588)4030958-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Holomorphes Vektorraumbündel |0 (DE-588)4160483-0 |D s |
689 | 1 | 1 | |a Projektiver Raum |0 (DE-588)4175893-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Vektorraumbündel |0 (DE-588)4187470-5 |D s |
689 | 2 | 1 | |a Projektive Geometrie |0 (DE-588)4047436-7 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
700 | 1 | |a Schneider, Michael |e Sonstige |4 oth | |
700 | 1 | |a Spindler, Heinz |e Sonstige |4 oth | |
830 | 0 | |a Progress in Mathematics |v 3 |w (DE-604)BV000004120 |9 3 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-1460-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856680 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094108348416 |
---|---|
any_adam_object | |
author | Okonek, Christian |
author_facet | Okonek, Christian |
author_role | aut |
author_sort | Okonek, Christian |
author_variant | c o co |
building | Verbundindex |
bvnumber | BV042421263 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165455066 (DE-599)BVBBV042421263 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-1460-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04363nmm a2200733zcb4500</leader><controlfield tag="001">BV042421263</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170925 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1980 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475714609</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-1460-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475714623</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4757-1462-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-1460-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165455066</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421263</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Okonek, Christian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vector Bundles on Complex Projective Spaces</subfield><subfield code="c">by Christian Okonek, Michael Schneider, Heinz Spindler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1980</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 389 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">3</subfield><subfield code="x">0743-1643</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">These lecture notes are intended as an introduction to the methods of classification of holomorphic vector bundles over projective algebraic manifolds X. To be as concrete as possible we have mostly restricted ourselves to the case X = Fn. According to Serre (GAGA) the classification of holomorphic vector bundles is equivalent to the classification of algebraic vector bundles. Here we have used almost exclusively the language of analytic geometry. The book is intended for students who have a basic knowledge of analytic and (or) algebraic geometry. Some fundamental results from these fields are summarized at the beginning. One of the authors gave a survey in the Seminaire Bourbaki 1978 on the current state of the classification of holomorphic vector bundles overFn. This lecture then served as the basis for a course of lectures in Gottingen in the Winter Semester 78/79. The present work is an extended and up-dated exposition of that course. Because of the introductory nature of this book we have had to leave out some difficult topics such as the restriction theorem of Barth. As compensation we have appended to each section a paragraph in which historical remarks are made, further results indicated and unsolved problems presented. The book is divided into two chapters. Each chapter is subdivided into several sections which in turn are made up of a number of paragraphs. Each section is preceeded by a short description of iv its contents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Projektiver Raum</subfield><subfield code="0">(DE-588)4175893-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphes Vektorraumbündel</subfield><subfield code="0">(DE-588)4160483-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Projektive Geometrie</subfield><subfield code="0">(DE-588)4047436-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorraumbündel</subfield><subfield code="0">(DE-588)4187470-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Klassifikation</subfield><subfield code="0">(DE-588)4030958-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Holomorphes Vektorraumbündel</subfield><subfield code="0">(DE-588)4160483-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Klassifikation</subfield><subfield code="0">(DE-588)4030958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Holomorphes Vektorraumbündel</subfield><subfield code="0">(DE-588)4160483-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Projektiver Raum</subfield><subfield code="0">(DE-588)4175893-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Vektorraumbündel</subfield><subfield code="0">(DE-588)4187470-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Projektive Geometrie</subfield><subfield code="0">(DE-588)4047436-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schneider, Michael</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spindler, Heinz</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Mathematics</subfield><subfield code="v">3</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-1460-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856680</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421263 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781475714609 9781475714623 |
issn | 0743-1643 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856680 |
oclc_num | 1165455066 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 389 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1980 |
publishDateSearch | 1980 |
publishDateSort | 1980 |
publisher | Springer US |
record_format | marc |
series | Progress in Mathematics |
series2 | Progress in Mathematics |
spelling | Okonek, Christian Verfasser aut Vector Bundles on Complex Projective Spaces by Christian Okonek, Michael Schneider, Heinz Spindler Boston, MA Springer US 1980 1 Online-Ressource (VII, 389 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 3 0743-1643 These lecture notes are intended as an introduction to the methods of classification of holomorphic vector bundles over projective algebraic manifolds X. To be as concrete as possible we have mostly restricted ourselves to the case X = Fn. According to Serre (GAGA) the classification of holomorphic vector bundles is equivalent to the classification of algebraic vector bundles. Here we have used almost exclusively the language of analytic geometry. The book is intended for students who have a basic knowledge of analytic and (or) algebraic geometry. Some fundamental results from these fields are summarized at the beginning. One of the authors gave a survey in the Seminaire Bourbaki 1978 on the current state of the classification of holomorphic vector bundles overFn. This lecture then served as the basis for a course of lectures in Gottingen in the Winter Semester 78/79. The present work is an extended and up-dated exposition of that course. Because of the introductory nature of this book we have had to leave out some difficult topics such as the restriction theorem of Barth. As compensation we have appended to each section a paragraph in which historical remarks are made, further results indicated and unsolved problems presented. The book is divided into two chapters. Each chapter is subdivided into several sections which in turn are made up of a number of paragraphs. Each section is preceeded by a short description of iv its contents Mathematics Distribution (Probability theory) Statistics Probability Theory and Stochastic Processes Statistics, general Mathematik Statistik Projektiver Raum (DE-588)4175893-6 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Holomorphes Vektorraumbündel (DE-588)4160483-0 gnd rswk-swf Projektive Geometrie (DE-588)4047436-7 gnd rswk-swf Vektorraumbündel (DE-588)4187470-5 gnd rswk-swf Klassifikation (DE-588)4030958-7 gnd rswk-swf Holomorphes Vektorraumbündel (DE-588)4160483-0 s Klassifikation (DE-588)4030958-7 s 1\p DE-604 Projektiver Raum (DE-588)4175893-6 s 2\p DE-604 Vektorraumbündel (DE-588)4187470-5 s Projektive Geometrie (DE-588)4047436-7 s 3\p DE-604 Algebraische Geometrie (DE-588)4001161-6 s 4\p DE-604 Schneider, Michael Sonstige oth Spindler, Heinz Sonstige oth Progress in Mathematics 3 (DE-604)BV000004120 3 https://doi.org/10.1007/978-1-4757-1460-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Okonek, Christian Vector Bundles on Complex Projective Spaces Progress in Mathematics Mathematics Distribution (Probability theory) Statistics Probability Theory and Stochastic Processes Statistics, general Mathematik Statistik Projektiver Raum (DE-588)4175893-6 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Holomorphes Vektorraumbündel (DE-588)4160483-0 gnd Projektive Geometrie (DE-588)4047436-7 gnd Vektorraumbündel (DE-588)4187470-5 gnd Klassifikation (DE-588)4030958-7 gnd |
subject_GND | (DE-588)4175893-6 (DE-588)4001161-6 (DE-588)4160483-0 (DE-588)4047436-7 (DE-588)4187470-5 (DE-588)4030958-7 |
title | Vector Bundles on Complex Projective Spaces |
title_auth | Vector Bundles on Complex Projective Spaces |
title_exact_search | Vector Bundles on Complex Projective Spaces |
title_full | Vector Bundles on Complex Projective Spaces by Christian Okonek, Michael Schneider, Heinz Spindler |
title_fullStr | Vector Bundles on Complex Projective Spaces by Christian Okonek, Michael Schneider, Heinz Spindler |
title_full_unstemmed | Vector Bundles on Complex Projective Spaces by Christian Okonek, Michael Schneider, Heinz Spindler |
title_short | Vector Bundles on Complex Projective Spaces |
title_sort | vector bundles on complex projective spaces |
topic | Mathematics Distribution (Probability theory) Statistics Probability Theory and Stochastic Processes Statistics, general Mathematik Statistik Projektiver Raum (DE-588)4175893-6 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Holomorphes Vektorraumbündel (DE-588)4160483-0 gnd Projektive Geometrie (DE-588)4047436-7 gnd Vektorraumbündel (DE-588)4187470-5 gnd Klassifikation (DE-588)4030958-7 gnd |
topic_facet | Mathematics Distribution (Probability theory) Statistics Probability Theory and Stochastic Processes Statistics, general Mathematik Statistik Projektiver Raum Algebraische Geometrie Holomorphes Vektorraumbündel Projektive Geometrie Vektorraumbündel Klassifikation |
url | https://doi.org/10.1007/978-1-4757-1460-9 |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT okonekchristian vectorbundlesoncomplexprojectivespaces AT schneidermichael vectorbundlesoncomplexprojectivespaces AT spindlerheinz vectorbundlesoncomplexprojectivespaces |