Almost-Periodic Functions and Functional Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1971
|
Schriftenreihe: | The University Series in Higher Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The theory of almost-periodic functions with complex values, created by H. Bohr [1] in his two classical papers published in Acta Mathematica in 1925 and 1926, has been developed by many authors and has had note worthy applications: we recall the works of Weyl, De la Vallee Poussin, Bochner, Stepanov, Wiener, Besicovic, Favard, Delsarte, Maak, Bogoliu bov, Levitan. This subject has been widely treated in the monographs by Bohr [2], Favard [1], Besicovic [1], Maak [1], Levitan [1], Cinquini [1], Corduneanu [1], [2]. An important class of almost-periodic functions was studied at the beginning of the century by Bohl and Esclangon. Bohr's theory has been extended by Muckenhoupt [1] in a particular case and, subsequently, by Bochner [1] and by Bochner and Von Neumann [1] to very general abstract spaces. The extension to Banach spaces is, in particular, of great interest, in view of the fundamental importance of these spaces in theory and application |
Beschreibung: | 1 Online-Ressource (VIII, 184 p) |
ISBN: | 9781475712544 9781475712568 |
DOI: | 10.1007/978-1-4757-1254-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421259 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1971 |||| o||u| ||||||eng d | ||
020 | |a 9781475712544 |c Online |9 978-1-4757-1254-4 | ||
020 | |a 9781475712568 |c Print |9 978-1-4757-1256-8 | ||
024 | 7 | |a 10.1007/978-1-4757-1254-4 |2 doi | |
035 | |a (OCoLC)1184688615 | ||
035 | |a (DE-599)BVBBV042421259 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Amerio, Luigi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Almost-Periodic Functions and Functional Equations |c by Luigi Amerio, Giovanni Prouse |
264 | 1 | |a New York, NY |b Springer New York |c 1971 | |
300 | |a 1 Online-Ressource (VIII, 184 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The University Series in Higher Mathematics | |
500 | |a The theory of almost-periodic functions with complex values, created by H. Bohr [1] in his two classical papers published in Acta Mathematica in 1925 and 1926, has been developed by many authors and has had note worthy applications: we recall the works of Weyl, De la Vallee Poussin, Bochner, Stepanov, Wiener, Besicovic, Favard, Delsarte, Maak, Bogoliu bov, Levitan. This subject has been widely treated in the monographs by Bohr [2], Favard [1], Besicovic [1], Maak [1], Levitan [1], Cinquini [1], Corduneanu [1], [2]. An important class of almost-periodic functions was studied at the beginning of the century by Bohl and Esclangon. Bohr's theory has been extended by Muckenhoupt [1] in a particular case and, subsequently, by Bochner [1] and by Bochner and Von Neumann [1] to very general abstract spaces. The extension to Banach spaces is, in particular, of great interest, in view of the fundamental importance of these spaces in theory and application | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Funktionalgleichung |0 (DE-588)4018923-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fastperiodische Funktion |0 (DE-588)4289369-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fastperiodische Funktion |0 (DE-588)4289369-0 |D s |
689 | 0 | 1 | |a Funktionalgleichung |0 (DE-588)4018923-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Prouse, Giovanni |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-1254-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856676 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094099959808 |
---|---|
any_adam_object | |
author | Amerio, Luigi |
author_facet | Amerio, Luigi |
author_role | aut |
author_sort | Amerio, Luigi |
author_variant | l a la |
building | Verbundindex |
bvnumber | BV042421259 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184688615 (DE-599)BVBBV042421259 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-1254-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02699nmm a2200493zc 4500</leader><controlfield tag="001">BV042421259</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1971 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475712544</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-1254-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475712568</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4757-1256-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-1254-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184688615</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421259</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Amerio, Luigi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Almost-Periodic Functions and Functional Equations</subfield><subfield code="c">by Luigi Amerio, Giovanni Prouse</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1971</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 184 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The University Series in Higher Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The theory of almost-periodic functions with complex values, created by H. Bohr [1] in his two classical papers published in Acta Mathematica in 1925 and 1926, has been developed by many authors and has had note worthy applications: we recall the works of Weyl, De la Vallee Poussin, Bochner, Stepanov, Wiener, Besicovic, Favard, Delsarte, Maak, Bogoliu bov, Levitan. This subject has been widely treated in the monographs by Bohr [2], Favard [1], Besicovic [1], Maak [1], Levitan [1], Cinquini [1], Corduneanu [1], [2]. An important class of almost-periodic functions was studied at the beginning of the century by Bohl and Esclangon. Bohr's theory has been extended by Muckenhoupt [1] in a particular case and, subsequently, by Bochner [1] and by Bochner and Von Neumann [1] to very general abstract spaces. The extension to Banach spaces is, in particular, of great interest, in view of the fundamental importance of these spaces in theory and application</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalgleichung</subfield><subfield code="0">(DE-588)4018923-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fastperiodische Funktion</subfield><subfield code="0">(DE-588)4289369-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fastperiodische Funktion</subfield><subfield code="0">(DE-588)4289369-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Funktionalgleichung</subfield><subfield code="0">(DE-588)4018923-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prouse, Giovanni</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-1254-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856676</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421259 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781475712544 9781475712568 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856676 |
oclc_num | 1184688615 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 184 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1971 |
publishDateSearch | 1971 |
publishDateSort | 1971 |
publisher | Springer New York |
record_format | marc |
series2 | The University Series in Higher Mathematics |
spelling | Amerio, Luigi Verfasser aut Almost-Periodic Functions and Functional Equations by Luigi Amerio, Giovanni Prouse New York, NY Springer New York 1971 1 Online-Ressource (VIII, 184 p) txt rdacontent c rdamedia cr rdacarrier The University Series in Higher Mathematics The theory of almost-periodic functions with complex values, created by H. Bohr [1] in his two classical papers published in Acta Mathematica in 1925 and 1926, has been developed by many authors and has had note worthy applications: we recall the works of Weyl, De la Vallee Poussin, Bochner, Stepanov, Wiener, Besicovic, Favard, Delsarte, Maak, Bogoliu bov, Levitan. This subject has been widely treated in the monographs by Bohr [2], Favard [1], Besicovic [1], Maak [1], Levitan [1], Cinquini [1], Corduneanu [1], [2]. An important class of almost-periodic functions was studied at the beginning of the century by Bohl and Esclangon. Bohr's theory has been extended by Muckenhoupt [1] in a particular case and, subsequently, by Bochner [1] and by Bochner and Von Neumann [1] to very general abstract spaces. The extension to Banach spaces is, in particular, of great interest, in view of the fundamental importance of these spaces in theory and application Mathematics Global analysis (Mathematics) Analysis Mathematik Funktionalgleichung (DE-588)4018923-5 gnd rswk-swf Fastperiodische Funktion (DE-588)4289369-0 gnd rswk-swf Fastperiodische Funktion (DE-588)4289369-0 s Funktionalgleichung (DE-588)4018923-5 s 1\p DE-604 Prouse, Giovanni Sonstige oth https://doi.org/10.1007/978-1-4757-1254-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Amerio, Luigi Almost-Periodic Functions and Functional Equations Mathematics Global analysis (Mathematics) Analysis Mathematik Funktionalgleichung (DE-588)4018923-5 gnd Fastperiodische Funktion (DE-588)4289369-0 gnd |
subject_GND | (DE-588)4018923-5 (DE-588)4289369-0 |
title | Almost-Periodic Functions and Functional Equations |
title_auth | Almost-Periodic Functions and Functional Equations |
title_exact_search | Almost-Periodic Functions and Functional Equations |
title_full | Almost-Periodic Functions and Functional Equations by Luigi Amerio, Giovanni Prouse |
title_fullStr | Almost-Periodic Functions and Functional Equations by Luigi Amerio, Giovanni Prouse |
title_full_unstemmed | Almost-Periodic Functions and Functional Equations by Luigi Amerio, Giovanni Prouse |
title_short | Almost-Periodic Functions and Functional Equations |
title_sort | almost periodic functions and functional equations |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Funktionalgleichung (DE-588)4018923-5 gnd Fastperiodische Funktion (DE-588)4289369-0 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Funktionalgleichung Fastperiodische Funktion |
url | https://doi.org/10.1007/978-1-4757-1254-4 |
work_keys_str_mv | AT amerioluigi almostperiodicfunctionsandfunctionalequations AT prousegiovanni almostperiodicfunctionsandfunctionalequations |