Complex Analysis in one Variable:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1985
|
Schlagworte: | |
Online-Zugang: | UBW01 Volltext |
Beschreibung: | This book is based on a first-year graduate course I gave three times at the University of Chicago. As it was addressed to graduate students who intended to specialize in mathematics, I tried to put the classical theory of functions of a complex variable in context, presenting proofs and points of view which relate the subject to other branches of mathematics. Complex analysis in one variable is ideally suited to this attempt. Of course, the branches of mathema tics one chooses, and the connections one makes, must depend on personal taste and knowledge. My own leaning towards several complex variables will be apparent, especially in the notes at the end of the different chapters. The first three chapters deal largely with classical material which is avai lable in the many books on the subject. I have tried to present this material as efficiently as I could, and, even here, to show the relationship with other branches of mathematics. Chapter 4 contains a proof of Picard's theorem; the method of proof I have chosen has far-reaching generalizations in several complex variables and in differential geometry. The next two chapters deal with the Runge approximation theorem and its many applications. The presentation here has been strongly influenced by work on several complex variables |
Beschreibung: | 1 Online-Ressource (XVI, 266 Seiten) |
ISBN: | 9781475711066 9780817632373 |
DOI: | 10.1007/978-1-4757-1106-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421254 | ||
003 | DE-604 | ||
005 | 20180920 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1985 |||| o||u| ||||||eng d | ||
020 | |a 9781475711066 |c Online |9 978-1-4757-1106-6 | ||
020 | |a 9780817632373 |c Print |9 978-0-8176-3237-3 | ||
024 | 7 | |a 10.1007/978-1-4757-1106-6 |2 doi | |
035 | |a (OCoLC)905457527 | ||
035 | |a (DE-599)BVBBV042421254 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-20 |a DE-634 | ||
082 | 0 | |a 515.9 |2 23 | |
084 | |a SK 700 |0 (DE-625)143253: |2 rvk | ||
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
084 | |a SK 780 |0 (DE-625)143255: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Narasimhan, Raghavan |d 1937- |e Verfasser |0 (DE-588)107634015 |4 aut | |
245 | 1 | 0 | |a Complex Analysis in one Variable |c by Raghavan Narasimhan |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1985 | |
300 | |a 1 Online-Ressource (XVI, 266 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a This book is based on a first-year graduate course I gave three times at the University of Chicago. As it was addressed to graduate students who intended to specialize in mathematics, I tried to put the classical theory of functions of a complex variable in context, presenting proofs and points of view which relate the subject to other branches of mathematics. Complex analysis in one variable is ideally suited to this attempt. Of course, the branches of mathema tics one chooses, and the connections one makes, must depend on personal taste and knowledge. My own leaning towards several complex variables will be apparent, especially in the notes at the end of the different chapters. The first three chapters deal largely with classical material which is avai lable in the many books on the subject. I have tried to present this material as efficiently as I could, and, even here, to show the relationship with other branches of mathematics. Chapter 4 contains a proof of Picard's theorem; the method of proof I have chosen has far-reaching generalizations in several complex variables and in differential geometry. The next two chapters deal with the Runge approximation theorem and its many applications. The presentation here has been strongly influenced by work on several complex variables | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Topology | |
650 | 4 | |a Functions of a Complex Variable | |
650 | 4 | |a Analysis | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Komplexe Variable |0 (DE-588)4164905-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktion |g Mathematik |0 (DE-588)4071510-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktion |g Mathematik |0 (DE-588)4071510-3 |D s |
689 | 0 | 1 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Komplexe Variable |0 (DE-588)4164905-9 |D s |
689 | 2 | 1 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-1106-6 |x Verlag |3 Volltext |
912 | |a ZDB-30-PQE |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856671 | ||
966 | e | |u http://ebookcentral.proquest.com/lib/ub-wuerzburg/detail.action?docID=3083579 |l UBW01 |p ZDB-30-PQE |q UBW_Einzelkauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804153094088425472 |
---|---|
any_adam_object | |
author | Narasimhan, Raghavan 1937- |
author_GND | (DE-588)107634015 |
author_facet | Narasimhan, Raghavan 1937- |
author_role | aut |
author_sort | Narasimhan, Raghavan 1937- |
author_variant | r n rn |
building | Verbundindex |
bvnumber | BV042421254 |
classification_rvk | SK 700 SK 750 SK 780 |
classification_tum | MAT 000 |
collection | ZDB-30-PQE ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)905457527 (DE-599)BVBBV042421254 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-1106-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03669nmm a2200637zc 4500</leader><controlfield tag="001">BV042421254</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180920 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475711066</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-1106-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817632373</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-3237-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-1106-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905457527</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421254</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 700</subfield><subfield code="0">(DE-625)143253:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 780</subfield><subfield code="0">(DE-625)143255:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Narasimhan, Raghavan</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)107634015</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex Analysis in one Variable</subfield><subfield code="c">by Raghavan Narasimhan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 266 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is based on a first-year graduate course I gave three times at the University of Chicago. As it was addressed to graduate students who intended to specialize in mathematics, I tried to put the classical theory of functions of a complex variable in context, presenting proofs and points of view which relate the subject to other branches of mathematics. Complex analysis in one variable is ideally suited to this attempt. Of course, the branches of mathema tics one chooses, and the connections one makes, must depend on personal taste and knowledge. My own leaning towards several complex variables will be apparent, especially in the notes at the end of the different chapters. The first three chapters deal largely with classical material which is avai lable in the many books on the subject. I have tried to present this material as efficiently as I could, and, even here, to show the relationship with other branches of mathematics. Chapter 4 contains a proof of Picard's theorem; the method of proof I have chosen has far-reaching generalizations in several complex variables and in differential geometry. The next two chapters deal with the Runge approximation theorem and its many applications. The presentation here has been strongly influenced by work on several complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of a Complex Variable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Variable</subfield><subfield code="0">(DE-588)4164905-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Komplexe Variable</subfield><subfield code="0">(DE-588)4164905-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-1106-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856671</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://ebookcentral.proquest.com/lib/ub-wuerzburg/detail.action?docID=3083579</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBW_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042421254 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781475711066 9780817632373 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856671 |
oclc_num | 905457527 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-20 DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-20 DE-634 |
physical | 1 Online-Ressource (XVI, 266 Seiten) |
psigel | ZDB-30-PQE ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive ZDB-30-PQE UBW_Einzelkauf |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Narasimhan, Raghavan 1937- Verfasser (DE-588)107634015 aut Complex Analysis in one Variable by Raghavan Narasimhan Boston, MA Birkhäuser Boston 1985 1 Online-Ressource (XVI, 266 Seiten) txt rdacontent c rdamedia cr rdacarrier This book is based on a first-year graduate course I gave three times at the University of Chicago. As it was addressed to graduate students who intended to specialize in mathematics, I tried to put the classical theory of functions of a complex variable in context, presenting proofs and points of view which relate the subject to other branches of mathematics. Complex analysis in one variable is ideally suited to this attempt. Of course, the branches of mathema tics one chooses, and the connections one makes, must depend on personal taste and knowledge. My own leaning towards several complex variables will be apparent, especially in the notes at the end of the different chapters. The first three chapters deal largely with classical material which is avai lable in the many books on the subject. I have tried to present this material as efficiently as I could, and, even here, to show the relationship with other branches of mathematics. Chapter 4 contains a proof of Picard's theorem; the method of proof I have chosen has far-reaching generalizations in several complex variables and in differential geometry. The next two chapters deal with the Runge approximation theorem and its many applications. The presentation here has been strongly influenced by work on several complex variables Mathematics Global analysis (Mathematics) Functions of complex variables Topology Functions of a Complex Variable Analysis Applications of Mathematics Mathematik Komplexe Variable (DE-588)4164905-9 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 gnd rswk-swf Mehrere komplexe Variable (DE-588)4169285-8 gnd rswk-swf Funktion Mathematik (DE-588)4071510-3 gnd rswk-swf Funktion Mathematik (DE-588)4071510-3 s Mehrere komplexe Variable (DE-588)4169285-8 s DE-604 Funktionentheorie (DE-588)4018935-1 s Komplexe Variable (DE-588)4164905-9 s https://doi.org/10.1007/978-1-4757-1106-6 Verlag Volltext |
spellingShingle | Narasimhan, Raghavan 1937- Complex Analysis in one Variable Mathematics Global analysis (Mathematics) Functions of complex variables Topology Functions of a Complex Variable Analysis Applications of Mathematics Mathematik Komplexe Variable (DE-588)4164905-9 gnd Funktionentheorie (DE-588)4018935-1 gnd Mehrere komplexe Variable (DE-588)4169285-8 gnd Funktion Mathematik (DE-588)4071510-3 gnd |
subject_GND | (DE-588)4164905-9 (DE-588)4018935-1 (DE-588)4169285-8 (DE-588)4071510-3 |
title | Complex Analysis in one Variable |
title_auth | Complex Analysis in one Variable |
title_exact_search | Complex Analysis in one Variable |
title_full | Complex Analysis in one Variable by Raghavan Narasimhan |
title_fullStr | Complex Analysis in one Variable by Raghavan Narasimhan |
title_full_unstemmed | Complex Analysis in one Variable by Raghavan Narasimhan |
title_short | Complex Analysis in one Variable |
title_sort | complex analysis in one variable |
topic | Mathematics Global analysis (Mathematics) Functions of complex variables Topology Functions of a Complex Variable Analysis Applications of Mathematics Mathematik Komplexe Variable (DE-588)4164905-9 gnd Funktionentheorie (DE-588)4018935-1 gnd Mehrere komplexe Variable (DE-588)4169285-8 gnd Funktion Mathematik (DE-588)4071510-3 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Functions of complex variables Topology Functions of a Complex Variable Analysis Applications of Mathematics Mathematik Komplexe Variable Funktionentheorie Mehrere komplexe Variable Funktion Mathematik |
url | https://doi.org/10.1007/978-1-4757-1106-6 |
work_keys_str_mv | AT narasimhanraghavan complexanalysisinonevariable |