Ergodic Theory and Semisimple Groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1984
|
Schriftenreihe: | Monographs in Mathematics
81 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is based on a course given at the University of Chicago in 1980-81. As with the course, the main motivation of this work is to present an accessible treatment, assuming minimal background, of the profound work of G. A. Margulis concerning rigidity, arithmeticity, and structure of lattices in semi simple groups, and related work of the author on the actions of semisimple groups and their lattice subgroups. In doing so, we develop the necessary prerequisites from earlier work of Borel, Furstenberg, Kazhdan, Moore, and others. One of the difficulties involved in an exposition of this material is the continuous interplay between ideas from the theory of algebraic groups on the one hand and ergodic theory on the other. This, of course, is not so much a mathematical difficulty as a cultural one, as the number of persons comfortable in both areas has not traditionally been large. We hope this work will also serve as a contribution towards improving that situation. While there are a number of satisfactory introductory expositions of the ergodic theory of integer or real line actions, there is no such exposition of the type of ergodic theoretic results with which we shall be dealing (concerning actions of more general groups), and hence we have assumed absolutely no knowledge of ergodic theory (not even the definition of "ergodic") on the part of the reader. All results are developed in full detail |
Beschreibung: | 1 Online-Ressource (X, 209 p) |
ISBN: | 9781468494884 9781468494907 |
DOI: | 10.1007/978-1-4684-9488-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421233 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1984 |||| o||u| ||||||eng d | ||
020 | |a 9781468494884 |c Online |9 978-1-4684-9488-4 | ||
020 | |a 9781468494907 |c Print |9 978-1-4684-9490-7 | ||
024 | 7 | |a 10.1007/978-1-4684-9488-4 |2 doi | |
035 | |a (OCoLC)879625124 | ||
035 | |a (DE-599)BVBBV042421233 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.39 |2 23 | |
082 | 0 | |a 515.48 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Zimmer, Robert J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Ergodic Theory and Semisimple Groups |c by Robert J. Zimmer |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1984 | |
300 | |a 1 Online-Ressource (X, 209 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Monographs in Mathematics |v 81 | |
500 | |a This book is based on a course given at the University of Chicago in 1980-81. As with the course, the main motivation of this work is to present an accessible treatment, assuming minimal background, of the profound work of G. A. Margulis concerning rigidity, arithmeticity, and structure of lattices in semi simple groups, and related work of the author on the actions of semisimple groups and their lattice subgroups. In doing so, we develop the necessary prerequisites from earlier work of Borel, Furstenberg, Kazhdan, Moore, and others. One of the difficulties involved in an exposition of this material is the continuous interplay between ideas from the theory of algebraic groups on the one hand and ergodic theory on the other. This, of course, is not so much a mathematical difficulty as a cultural one, as the number of persons comfortable in both areas has not traditionally been large. We hope this work will also serve as a contribution towards improving that situation. While there are a number of satisfactory introductory expositions of the ergodic theory of integer or real line actions, there is no such exposition of the type of ergodic theoretic results with which we shall be dealing (concerning actions of more general groups), and hence we have assumed absolutely no knowledge of ergodic theory (not even the definition of "ergodic") on the part of the reader. All results are developed in full detail | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 4 | |a Dynamical Systems and Ergodic Theory | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ergodentheorie |0 (DE-588)4015246-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Halbeinfache Lie-Gruppe |0 (DE-588)4122188-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | 1 | |a Ergodentheorie |0 (DE-588)4015246-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Ergodentheorie |0 (DE-588)4015246-7 |D s |
689 | 1 | 1 | |a Halbeinfache Lie-Gruppe |0 (DE-588)4122188-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4684-9488-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856650 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094066405376 |
---|---|
any_adam_object | |
author | Zimmer, Robert J. |
author_facet | Zimmer, Robert J. |
author_role | aut |
author_sort | Zimmer, Robert J. |
author_variant | r j z rj rjz |
building | Verbundindex |
bvnumber | BV042421233 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879625124 (DE-599)BVBBV042421233 |
dewey-full | 515.39 515.48 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.39 515.48 |
dewey-search | 515.39 515.48 |
dewey-sort | 3515.39 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4684-9488-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03475nmm a2200577zcb4500</leader><controlfield tag="001">BV042421233</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1984 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468494884</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4684-9488-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468494907</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4684-9490-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-9488-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879625124</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421233</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.39</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.48</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zimmer, Robert J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ergodic Theory and Semisimple Groups</subfield><subfield code="c">by Robert J. Zimmer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 209 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Monographs in Mathematics</subfield><subfield code="v">81</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is based on a course given at the University of Chicago in 1980-81. As with the course, the main motivation of this work is to present an accessible treatment, assuming minimal background, of the profound work of G. A. Margulis concerning rigidity, arithmeticity, and structure of lattices in semi simple groups, and related work of the author on the actions of semisimple groups and their lattice subgroups. In doing so, we develop the necessary prerequisites from earlier work of Borel, Furstenberg, Kazhdan, Moore, and others. One of the difficulties involved in an exposition of this material is the continuous interplay between ideas from the theory of algebraic groups on the one hand and ergodic theory on the other. This, of course, is not so much a mathematical difficulty as a cultural one, as the number of persons comfortable in both areas has not traditionally been large. We hope this work will also serve as a contribution towards improving that situation. While there are a number of satisfactory introductory expositions of the ergodic theory of integer or real line actions, there is no such exposition of the type of ergodic theoretic results with which we shall be dealing (concerning actions of more general groups), and hence we have assumed absolutely no knowledge of ergodic theory (not even the definition of "ergodic") on the part of the reader. All results are developed in full detail</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical Systems and Ergodic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ergodentheorie</subfield><subfield code="0">(DE-588)4015246-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbeinfache Lie-Gruppe</subfield><subfield code="0">(DE-588)4122188-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ergodentheorie</subfield><subfield code="0">(DE-588)4015246-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Ergodentheorie</subfield><subfield code="0">(DE-588)4015246-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Halbeinfache Lie-Gruppe</subfield><subfield code="0">(DE-588)4122188-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-9488-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856650</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421233 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781468494884 9781468494907 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856650 |
oclc_num | 879625124 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 209 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Monographs in Mathematics |
spelling | Zimmer, Robert J. Verfasser aut Ergodic Theory and Semisimple Groups by Robert J. Zimmer Boston, MA Birkhäuser Boston 1984 1 Online-Ressource (X, 209 p) txt rdacontent c rdamedia cr rdacarrier Monographs in Mathematics 81 This book is based on a course given at the University of Chicago in 1980-81. As with the course, the main motivation of this work is to present an accessible treatment, assuming minimal background, of the profound work of G. A. Margulis concerning rigidity, arithmeticity, and structure of lattices in semi simple groups, and related work of the author on the actions of semisimple groups and their lattice subgroups. In doing so, we develop the necessary prerequisites from earlier work of Borel, Furstenberg, Kazhdan, Moore, and others. One of the difficulties involved in an exposition of this material is the continuous interplay between ideas from the theory of algebraic groups on the one hand and ergodic theory on the other. This, of course, is not so much a mathematical difficulty as a cultural one, as the number of persons comfortable in both areas has not traditionally been large. We hope this work will also serve as a contribution towards improving that situation. While there are a number of satisfactory introductory expositions of the ergodic theory of integer or real line actions, there is no such exposition of the type of ergodic theoretic results with which we shall be dealing (concerning actions of more general groups), and hence we have assumed absolutely no knowledge of ergodic theory (not even the definition of "ergodic") on the part of the reader. All results are developed in full detail Mathematics Group theory Differentiable dynamical systems Dynamical Systems and Ergodic Theory Group Theory and Generalizations Mathematik Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Ergodentheorie (DE-588)4015246-7 gnd rswk-swf Halbeinfache Lie-Gruppe (DE-588)4122188-6 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 s Ergodentheorie (DE-588)4015246-7 s 1\p DE-604 Halbeinfache Lie-Gruppe (DE-588)4122188-6 s 2\p DE-604 https://doi.org/10.1007/978-1-4684-9488-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Zimmer, Robert J. Ergodic Theory and Semisimple Groups Mathematics Group theory Differentiable dynamical systems Dynamical Systems and Ergodic Theory Group Theory and Generalizations Mathematik Lie-Gruppe (DE-588)4035695-4 gnd Ergodentheorie (DE-588)4015246-7 gnd Halbeinfache Lie-Gruppe (DE-588)4122188-6 gnd |
subject_GND | (DE-588)4035695-4 (DE-588)4015246-7 (DE-588)4122188-6 |
title | Ergodic Theory and Semisimple Groups |
title_auth | Ergodic Theory and Semisimple Groups |
title_exact_search | Ergodic Theory and Semisimple Groups |
title_full | Ergodic Theory and Semisimple Groups by Robert J. Zimmer |
title_fullStr | Ergodic Theory and Semisimple Groups by Robert J. Zimmer |
title_full_unstemmed | Ergodic Theory and Semisimple Groups by Robert J. Zimmer |
title_short | Ergodic Theory and Semisimple Groups |
title_sort | ergodic theory and semisimple groups |
topic | Mathematics Group theory Differentiable dynamical systems Dynamical Systems and Ergodic Theory Group Theory and Generalizations Mathematik Lie-Gruppe (DE-588)4035695-4 gnd Ergodentheorie (DE-588)4015246-7 gnd Halbeinfache Lie-Gruppe (DE-588)4122188-6 gnd |
topic_facet | Mathematics Group theory Differentiable dynamical systems Dynamical Systems and Ergodic Theory Group Theory and Generalizations Mathematik Lie-Gruppe Ergodentheorie Halbeinfache Lie-Gruppe |
url | https://doi.org/10.1007/978-1-4684-9488-4 |
work_keys_str_mv | AT zimmerrobertj ergodictheoryandsemisimplegroups |