Excursions of Markov Processes:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1992
|
Schriftenreihe: | Probability and Its Applications
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Let {Xti t ~ O} be a Markov process in Rl, and break up the path X t into (random) component pieces consisting of the zero set ({ tlX = O}) and t the "excursions away from 0," that is pieces of path X. : T ::5 s ::5 t, with Xr- = X = 0, but X. 1= 0 for T < s < t. When one measures the time in t the zero set appropriately (in terms of the local time) the excursions acquire a measure theoretic structure practically identical to that of processes with stationary independent increments, except the values of the process are paths rather than real numbers. And there is a measure on path space that helps describe the measure theoretic properties of the excursions in the same way that the Levy measure describes the jumps of a process with independent increments. The entire circle of ideas is called excursion theory. There are many attractive things about the subject: it is an area where one can use to advantage general probabilistic potential theory to make quite specific calculations, it provides a natural setting for apply ing esoteric things like David Williams' path decomposition, it provides a method for constructing processes whose description in terms of an in finitesimal generator or some such analytic object would be complicated. And the ideas seem to be closely related to a good deal of current research in probability |
Beschreibung: | 1 Online-Ressource (XII, 276 p) |
ISBN: | 9781468494129 9781468494143 |
DOI: | 10.1007/978-1-4684-9412-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421216 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1992 |||| o||u| ||||||eng d | ||
020 | |a 9781468494129 |c Online |9 978-1-4684-9412-9 | ||
020 | |a 9781468494143 |c Print |9 978-1-4684-9414-3 | ||
024 | 7 | |a 10.1007/978-1-4684-9412-9 |2 doi | |
035 | |a (OCoLC)864019488 | ||
035 | |a (DE-599)BVBBV042421216 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Blumenthal, Robert M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Excursions of Markov Processes |c by Robert M. Blumenthal |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1992 | |
300 | |a 1 Online-Ressource (XII, 276 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Probability and Its Applications | |
500 | |a Let {Xti t ~ O} be a Markov process in Rl, and break up the path X t into (random) component pieces consisting of the zero set ({ tlX = O}) and t the "excursions away from 0," that is pieces of path X. : T ::5 s ::5 t, with Xr- = X = 0, but X. 1= 0 for T < s < t. When one measures the time in t the zero set appropriately (in terms of the local time) the excursions acquire a measure theoretic structure practically identical to that of processes with stationary independent increments, except the values of the process are paths rather than real numbers. And there is a measure on path space that helps describe the measure theoretic properties of the excursions in the same way that the Levy measure describes the jumps of a process with independent increments. The entire circle of ideas is called excursion theory. There are many attractive things about the subject: it is an area where one can use to advantage general probabilistic potential theory to make quite specific calculations, it provides a natural setting for apply ing esoteric things like David Williams' path decomposition, it provides a method for constructing processes whose description in terms of an in finitesimal generator or some such analytic object would be complicated. And the ideas seem to be closely related to a good deal of current research in probability | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Markov-Prozess |0 (DE-588)4134948-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Markov-Prozess |0 (DE-588)4134948-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4684-9412-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856633 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094023413760 |
---|---|
any_adam_object | |
author | Blumenthal, Robert M. |
author_facet | Blumenthal, Robert M. |
author_role | aut |
author_sort | Blumenthal, Robert M. |
author_variant | r m b rm rmb |
building | Verbundindex |
bvnumber | BV042421216 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864019488 (DE-599)BVBBV042421216 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4684-9412-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02892nmm a2200457zc 4500</leader><controlfield tag="001">BV042421216</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468494129</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4684-9412-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468494143</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4684-9414-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-9412-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864019488</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421216</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Blumenthal, Robert M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Excursions of Markov Processes</subfield><subfield code="c">by Robert M. Blumenthal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 276 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Probability and Its Applications</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Let {Xti t ~ O} be a Markov process in Rl, and break up the path X t into (random) component pieces consisting of the zero set ({ tlX = O}) and t the "excursions away from 0," that is pieces of path X. : T ::5 s ::5 t, with Xr- = X = 0, but X. 1= 0 for T < s < t. When one measures the time in t the zero set appropriately (in terms of the local time) the excursions acquire a measure theoretic structure practically identical to that of processes with stationary independent increments, except the values of the process are paths rather than real numbers. And there is a measure on path space that helps describe the measure theoretic properties of the excursions in the same way that the Levy measure describes the jumps of a process with independent increments. The entire circle of ideas is called excursion theory. There are many attractive things about the subject: it is an area where one can use to advantage general probabilistic potential theory to make quite specific calculations, it provides a natural setting for apply ing esoteric things like David Williams' path decomposition, it provides a method for constructing processes whose description in terms of an in finitesimal generator or some such analytic object would be complicated. And the ideas seem to be closely related to a good deal of current research in probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Prozess</subfield><subfield code="0">(DE-588)4134948-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Markov-Prozess</subfield><subfield code="0">(DE-588)4134948-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-9412-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856633</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421216 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781468494129 9781468494143 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856633 |
oclc_num | 864019488 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 276 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Probability and Its Applications |
spelling | Blumenthal, Robert M. Verfasser aut Excursions of Markov Processes by Robert M. Blumenthal Boston, MA Birkhäuser Boston 1992 1 Online-Ressource (XII, 276 p) txt rdacontent c rdamedia cr rdacarrier Probability and Its Applications Let {Xti t ~ O} be a Markov process in Rl, and break up the path X t into (random) component pieces consisting of the zero set ({ tlX = O}) and t the "excursions away from 0," that is pieces of path X. : T ::5 s ::5 t, with Xr- = X = 0, but X. 1= 0 for T < s < t. When one measures the time in t the zero set appropriately (in terms of the local time) the excursions acquire a measure theoretic structure practically identical to that of processes with stationary independent increments, except the values of the process are paths rather than real numbers. And there is a measure on path space that helps describe the measure theoretic properties of the excursions in the same way that the Levy measure describes the jumps of a process with independent increments. The entire circle of ideas is called excursion theory. There are many attractive things about the subject: it is an area where one can use to advantage general probabilistic potential theory to make quite specific calculations, it provides a natural setting for apply ing esoteric things like David Williams' path decomposition, it provides a method for constructing processes whose description in terms of an in finitesimal generator or some such analytic object would be complicated. And the ideas seem to be closely related to a good deal of current research in probability Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Markov-Prozess (DE-588)4134948-9 gnd rswk-swf Markov-Prozess (DE-588)4134948-9 s 1\p DE-604 https://doi.org/10.1007/978-1-4684-9412-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Blumenthal, Robert M. Excursions of Markov Processes Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Markov-Prozess (DE-588)4134948-9 gnd |
subject_GND | (DE-588)4134948-9 |
title | Excursions of Markov Processes |
title_auth | Excursions of Markov Processes |
title_exact_search | Excursions of Markov Processes |
title_full | Excursions of Markov Processes by Robert M. Blumenthal |
title_fullStr | Excursions of Markov Processes by Robert M. Blumenthal |
title_full_unstemmed | Excursions of Markov Processes by Robert M. Blumenthal |
title_short | Excursions of Markov Processes |
title_sort | excursions of markov processes |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Markov-Prozess (DE-588)4134948-9 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Markov-Prozess |
url | https://doi.org/10.1007/978-1-4684-9412-9 |
work_keys_str_mv | AT blumenthalrobertm excursionsofmarkovprocesses |