Number Fields:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1977
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, "down-to-earth" manner. It thus avoids local methods, for example, and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises |
Beschreibung: | 1 Online-Ressource (292p) |
ISBN: | 9781468493566 9780387902791 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-1-4684-9356-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421201 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1977 |||| o||u| ||||||eng d | ||
020 | |a 9781468493566 |c Online |9 978-1-4684-9356-6 | ||
020 | |a 9780387902791 |c Print |9 978-0-387-90279-1 | ||
024 | 7 | |a 10.1007/978-1-4684-9356-6 |2 doi | |
035 | |a (OCoLC)863990479 | ||
035 | |a (DE-599)BVBBV042421201 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Marcus, Daniel A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Number Fields |c by Daniel A. Marcus |
264 | 1 | |a New York, NY |b Springer New York |c 1977 | |
300 | |a 1 Online-Ressource (292p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, "down-to-earth" manner. It thus avoids local methods, for example, and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zahlkörper |0 (DE-588)4067273-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraischer Zahlkörper |0 (DE-588)4068537-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |D s |
689 | 0 | 1 | |a Zahlkörper |0 (DE-588)4067273-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Algebraischer Zahlkörper |0 (DE-588)4068537-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4684-9356-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856618 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094000345088 |
---|---|
any_adam_object | |
author | Marcus, Daniel A. |
author_facet | Marcus, Daniel A. |
author_role | aut |
author_sort | Marcus, Daniel A. |
author_variant | d a m da dam |
building | Verbundindex |
bvnumber | BV042421201 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863990479 (DE-599)BVBBV042421201 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4684-9356-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02485nmm a2200589zc 4500</leader><controlfield tag="001">BV042421201</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1977 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468493566</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4684-9356-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387902791</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-90279-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-9356-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863990479</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421201</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marcus, Daniel A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Number Fields</subfield><subfield code="c">by Daniel A. Marcus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1977</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (292p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, "down-to-earth" manner. It thus avoids local methods, for example, and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlkörper</subfield><subfield code="0">(DE-588)4067273-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraischer Zahlkörper</subfield><subfield code="0">(DE-588)4068537-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zahlkörper</subfield><subfield code="0">(DE-588)4067273-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraischer Zahlkörper</subfield><subfield code="0">(DE-588)4068537-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-9356-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856618</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421201 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781468493566 9780387902791 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856618 |
oclc_num | 863990479 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (292p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1977 |
publishDateSearch | 1977 |
publishDateSort | 1977 |
publisher | Springer New York |
record_format | marc |
series2 | Universitext |
spelling | Marcus, Daniel A. Verfasser aut Number Fields by Daniel A. Marcus New York, NY Springer New York 1977 1 Online-Ressource (292p) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, "down-to-earth" manner. It thus avoids local methods, for example, and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises Mathematics Algebra Number theory Number Theory Mathematik Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Zahlkörper (DE-588)4067273-6 gnd rswk-swf Algebraischer Zahlkörper (DE-588)4068537-8 gnd rswk-swf Algebraische Zahlentheorie (DE-588)4001170-7 gnd rswk-swf Algebraische Zahlentheorie (DE-588)4001170-7 s Zahlkörper (DE-588)4067273-6 s 1\p DE-604 Algebraischer Zahlkörper (DE-588)4068537-8 s 2\p DE-604 Zahlentheorie (DE-588)4067277-3 s 3\p DE-604 https://doi.org/10.1007/978-1-4684-9356-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Marcus, Daniel A. Number Fields Mathematics Algebra Number theory Number Theory Mathematik Zahlentheorie (DE-588)4067277-3 gnd Zahlkörper (DE-588)4067273-6 gnd Algebraischer Zahlkörper (DE-588)4068537-8 gnd Algebraische Zahlentheorie (DE-588)4001170-7 gnd |
subject_GND | (DE-588)4067277-3 (DE-588)4067273-6 (DE-588)4068537-8 (DE-588)4001170-7 |
title | Number Fields |
title_auth | Number Fields |
title_exact_search | Number Fields |
title_full | Number Fields by Daniel A. Marcus |
title_fullStr | Number Fields by Daniel A. Marcus |
title_full_unstemmed | Number Fields by Daniel A. Marcus |
title_short | Number Fields |
title_sort | number fields |
topic | Mathematics Algebra Number theory Number Theory Mathematik Zahlentheorie (DE-588)4067277-3 gnd Zahlkörper (DE-588)4067273-6 gnd Algebraischer Zahlkörper (DE-588)4068537-8 gnd Algebraische Zahlentheorie (DE-588)4001170-7 gnd |
topic_facet | Mathematics Algebra Number theory Number Theory Mathematik Zahlentheorie Zahlkörper Algebraischer Zahlkörper Algebraische Zahlentheorie |
url | https://doi.org/10.1007/978-1-4684-9356-6 |
work_keys_str_mv | AT marcusdaniela numberfields |