The N-Vortex Problem: Analytical Techniques
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2001
|
Schriftenreihe: | Applied Mathematical Sciences
145 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is an introduction to current research on the N-vortex problem of fluid mechanics in the spirit of several works on N-body problems from celestial mechanics, as for example Pollard (1966), Szebehely (1967), or Meyer and Hall (1992). Despite the fact that the field has progressed rapidly in the last 20 years, no book covers this topic, particularly its more recent developments, in a thorough way. While Saffman's Vortex Dynamics (1992) covers the general theory from a classical point of view, and Marchioro and Pulvirenti's Mathematical Theory of Incompressible Nonviscous Fluids (1994), Doering and Gibbon's Applied Analysis of the Navier-Stokes Equations (1995), and Majda and Bertozzi's Vorticity and Incompressible Fluid Flow (2001) cover much of the relevant mathematical background, none of these discusses the more recent literature on integrable and nonintegrable point vortex motion in any depth. Chorin's Vorticity and Turbulence (1996) focuses on aspects of vorticity dynamics that are most relevant toward an understanding of turbulence, while Arnold and Khesin's Topological Methods in Hydrodynamics (1998) lays the groundwork for a geometrical and topological study of the Euler equations. Ottino's The Kinematics of Mixing: Stretching, Chaos, and Transport (1989) is an introductory textbook on the use of dynamical systems techniques in the study of fluid mixing, while Wiggins' Chaotic Transport in Dynamical Systems (1992) describes techniques that are of general use, without focusing specifically on vortex motion |
Beschreibung: | 1 Online-Ressource (XVIII, 420 p) |
ISBN: | 9781468492903 9781441929167 |
DOI: | 10.1007/978-1-4684-9290-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421183 | ||
003 | DE-604 | ||
005 | 20200707 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781468492903 |c Online |9 978-1-4684-9290-3 | ||
020 | |a 9781441929167 |c Print |9 978-1-4419-2916-7 | ||
024 | 7 | |a 10.1007/978-1-4684-9290-3 |2 doi | |
035 | |a (OCoLC)905446567 | ||
035 | |a (DE-599)BVBBV042421183 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 533.62 |2 23 | |
082 | 0 | |a 532 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Newton, Paul K. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The N-Vortex Problem |b Analytical Techniques |c by Paul K. Newton |
264 | 1 | |a New York, NY |b Springer New York |c 2001 | |
300 | |a 1 Online-Ressource (XVIII, 420 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Applied Mathematical Sciences |v 145 | |
500 | |a This book is an introduction to current research on the N-vortex problem of fluid mechanics in the spirit of several works on N-body problems from celestial mechanics, as for example Pollard (1966), Szebehely (1967), or Meyer and Hall (1992). Despite the fact that the field has progressed rapidly in the last 20 years, no book covers this topic, particularly its more recent developments, in a thorough way. While Saffman's Vortex Dynamics (1992) covers the general theory from a classical point of view, and Marchioro and Pulvirenti's Mathematical Theory of Incompressible Nonviscous Fluids (1994), Doering and Gibbon's Applied Analysis of the Navier-Stokes Equations (1995), and Majda and Bertozzi's Vorticity and Incompressible Fluid Flow (2001) cover much of the relevant mathematical background, none of these discusses the more recent literature on integrable and nonintegrable point vortex motion in any depth. Chorin's Vorticity and Turbulence (1996) focuses on aspects of vorticity dynamics that are most relevant toward an understanding of turbulence, while Arnold and Khesin's Topological Methods in Hydrodynamics (1998) lays the groundwork for a geometrical and topological study of the Euler equations. Ottino's The Kinematics of Mixing: Stretching, Chaos, and Transport (1989) is an introductory textbook on the use of dynamical systems techniques in the study of fluid mixing, while Wiggins' Chaotic Transport in Dynamical Systems (1992) describes techniques that are of general use, without focusing specifically on vortex motion | ||
650 | 4 | |a Physics | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Engineering | |
650 | 4 | |a Fluid- and Aerodynamics | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Computational Intelligence | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Wirbel |g Physik |0 (DE-588)4128386-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamilton-Formalismus |0 (DE-588)4376155-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vielkörperproblem |0 (DE-588)4078900-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wirbel |g Physik |0 (DE-588)4128386-7 |D s |
689 | 0 | 1 | |a Vielkörperproblem |0 (DE-588)4078900-7 |D s |
689 | 0 | 2 | |a Hamilton-Formalismus |0 (DE-588)4376155-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Applied Mathematical Sciences |v 145 |w (DE-604)BV040244599 |9 145 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4684-9290-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856600 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093956304896 |
---|---|
any_adam_object | |
author | Newton, Paul K. |
author_facet | Newton, Paul K. |
author_role | aut |
author_sort | Newton, Paul K. |
author_variant | p k n pk pkn |
building | Verbundindex |
bvnumber | BV042421183 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)905446567 (DE-599)BVBBV042421183 |
dewey-full | 533.62 532 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 533 - Pneumatics (Gas mechanics) 532 - Fluid mechanics |
dewey-raw | 533.62 532 |
dewey-search | 533.62 532 |
dewey-sort | 3533.62 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-1-4684-9290-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03612nmm a2200577zcb4500</leader><controlfield tag="001">BV042421183</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200707 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468492903</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4684-9290-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441929167</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-2916-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-9290-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905446567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421183</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">533.62</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Newton, Paul K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The N-Vortex Problem</subfield><subfield code="b">Analytical Techniques</subfield><subfield code="c">by Paul K. Newton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 420 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">145</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is an introduction to current research on the N-vortex problem of fluid mechanics in the spirit of several works on N-body problems from celestial mechanics, as for example Pollard (1966), Szebehely (1967), or Meyer and Hall (1992). Despite the fact that the field has progressed rapidly in the last 20 years, no book covers this topic, particularly its more recent developments, in a thorough way. While Saffman's Vortex Dynamics (1992) covers the general theory from a classical point of view, and Marchioro and Pulvirenti's Mathematical Theory of Incompressible Nonviscous Fluids (1994), Doering and Gibbon's Applied Analysis of the Navier-Stokes Equations (1995), and Majda and Bertozzi's Vorticity and Incompressible Fluid Flow (2001) cover much of the relevant mathematical background, none of these discusses the more recent literature on integrable and nonintegrable point vortex motion in any depth. Chorin's Vorticity and Turbulence (1996) focuses on aspects of vorticity dynamics that are most relevant toward an understanding of turbulence, while Arnold and Khesin's Topological Methods in Hydrodynamics (1998) lays the groundwork for a geometrical and topological study of the Euler equations. Ottino's The Kinematics of Mixing: Stretching, Chaos, and Transport (1989) is an introductory textbook on the use of dynamical systems techniques in the study of fluid mixing, while Wiggins' Chaotic Transport in Dynamical Systems (1992) describes techniques that are of general use, without focusing specifically on vortex motion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid- and Aerodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wirbel</subfield><subfield code="g">Physik</subfield><subfield code="0">(DE-588)4128386-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamilton-Formalismus</subfield><subfield code="0">(DE-588)4376155-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vielkörperproblem</subfield><subfield code="0">(DE-588)4078900-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wirbel</subfield><subfield code="g">Physik</subfield><subfield code="0">(DE-588)4128386-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Vielkörperproblem</subfield><subfield code="0">(DE-588)4078900-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Hamilton-Formalismus</subfield><subfield code="0">(DE-588)4376155-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">145</subfield><subfield code="w">(DE-604)BV040244599</subfield><subfield code="9">145</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-9290-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856600</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421183 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781468492903 9781441929167 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856600 |
oclc_num | 905446567 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 420 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer New York |
record_format | marc |
series | Applied Mathematical Sciences |
series2 | Applied Mathematical Sciences |
spelling | Newton, Paul K. Verfasser aut The N-Vortex Problem Analytical Techniques by Paul K. Newton New York, NY Springer New York 2001 1 Online-Ressource (XVIII, 420 p) txt rdacontent c rdamedia cr rdacarrier Applied Mathematical Sciences 145 This book is an introduction to current research on the N-vortex problem of fluid mechanics in the spirit of several works on N-body problems from celestial mechanics, as for example Pollard (1966), Szebehely (1967), or Meyer and Hall (1992). Despite the fact that the field has progressed rapidly in the last 20 years, no book covers this topic, particularly its more recent developments, in a thorough way. While Saffman's Vortex Dynamics (1992) covers the general theory from a classical point of view, and Marchioro and Pulvirenti's Mathematical Theory of Incompressible Nonviscous Fluids (1994), Doering and Gibbon's Applied Analysis of the Navier-Stokes Equations (1995), and Majda and Bertozzi's Vorticity and Incompressible Fluid Flow (2001) cover much of the relevant mathematical background, none of these discusses the more recent literature on integrable and nonintegrable point vortex motion in any depth. Chorin's Vorticity and Turbulence (1996) focuses on aspects of vorticity dynamics that are most relevant toward an understanding of turbulence, while Arnold and Khesin's Topological Methods in Hydrodynamics (1998) lays the groundwork for a geometrical and topological study of the Euler equations. Ottino's The Kinematics of Mixing: Stretching, Chaos, and Transport (1989) is an introductory textbook on the use of dynamical systems techniques in the study of fluid mixing, while Wiggins' Chaotic Transport in Dynamical Systems (1992) describes techniques that are of general use, without focusing specifically on vortex motion Physics Cell aggregation / Mathematics Engineering Fluid- and Aerodynamics Manifolds and Cell Complexes (incl. Diff.Topology) Computational Intelligence Ingenieurwissenschaften Mathematik Wirbel Physik (DE-588)4128386-7 gnd rswk-swf Hamilton-Formalismus (DE-588)4376155-0 gnd rswk-swf Vielkörperproblem (DE-588)4078900-7 gnd rswk-swf Wirbel Physik (DE-588)4128386-7 s Vielkörperproblem (DE-588)4078900-7 s Hamilton-Formalismus (DE-588)4376155-0 s 1\p DE-604 Applied Mathematical Sciences 145 (DE-604)BV040244599 145 https://doi.org/10.1007/978-1-4684-9290-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Newton, Paul K. The N-Vortex Problem Analytical Techniques Applied Mathematical Sciences Physics Cell aggregation / Mathematics Engineering Fluid- and Aerodynamics Manifolds and Cell Complexes (incl. Diff.Topology) Computational Intelligence Ingenieurwissenschaften Mathematik Wirbel Physik (DE-588)4128386-7 gnd Hamilton-Formalismus (DE-588)4376155-0 gnd Vielkörperproblem (DE-588)4078900-7 gnd |
subject_GND | (DE-588)4128386-7 (DE-588)4376155-0 (DE-588)4078900-7 |
title | The N-Vortex Problem Analytical Techniques |
title_auth | The N-Vortex Problem Analytical Techniques |
title_exact_search | The N-Vortex Problem Analytical Techniques |
title_full | The N-Vortex Problem Analytical Techniques by Paul K. Newton |
title_fullStr | The N-Vortex Problem Analytical Techniques by Paul K. Newton |
title_full_unstemmed | The N-Vortex Problem Analytical Techniques by Paul K. Newton |
title_short | The N-Vortex Problem |
title_sort | the n vortex problem analytical techniques |
title_sub | Analytical Techniques |
topic | Physics Cell aggregation / Mathematics Engineering Fluid- and Aerodynamics Manifolds and Cell Complexes (incl. Diff.Topology) Computational Intelligence Ingenieurwissenschaften Mathematik Wirbel Physik (DE-588)4128386-7 gnd Hamilton-Formalismus (DE-588)4376155-0 gnd Vielkörperproblem (DE-588)4078900-7 gnd |
topic_facet | Physics Cell aggregation / Mathematics Engineering Fluid- and Aerodynamics Manifolds and Cell Complexes (incl. Diff.Topology) Computational Intelligence Ingenieurwissenschaften Mathematik Wirbel Physik Hamilton-Formalismus Vielkörperproblem |
url | https://doi.org/10.1007/978-1-4684-9290-3 |
volume_link | (DE-604)BV040244599 |
work_keys_str_mv | AT newtonpaulk thenvortexproblemanalyticaltechniques |