Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1996
|
Schriftenreihe: | Probability and its Applications
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is based on research that, to a large extent, started around 1990, when a research project on fluid flow in stochastic reservoirs was initiated by a group including some of us with the support of VISTA, a research cooperation between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was to use stochastic partial differential equations (SPDEs) to describe the flow of fluid in a medium where some of the parameters, e.g., the permeability, were stochastic or "noisy". We soon realized that the theory of SPDEs at the time was insufficient to handle such equations. Therefore it became our aim to develop a new mathematically rigorous theory that satisfied the following conditions. 1) The theory should be physically meaningful and realistic, and the corresponding solutions should make sense physically and should be useful in applications. 2) The theory should be general enough to handle many of the interesting SPDEs that occur in reservoir theory and related areas. 3) The theory should be strong and efficient enough to allow us to solve these SPDEs explicitly, or at least provide algorithms or approximations for the solutions |
Beschreibung: | 1 Online-Ressource (XII, 231 p) |
ISBN: | 9781468492156 9781468492170 |
DOI: | 10.1007/978-1-4684-9215-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421173 | ||
003 | DE-604 | ||
005 | 20181017 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9781468492156 |c Online |9 978-1-4684-9215-6 | ||
020 | |a 9781468492170 |c Print |9 978-1-4684-9217-0 | ||
024 | 7 | |a 10.1007/978-1-4684-9215-6 |2 doi | |
035 | |a (OCoLC)1186423679 | ||
035 | |a (DE-599)BVBBV042421173 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Holden, Helge |d 1956- |e Verfasser |0 (DE-588)111693667 |4 aut | |
245 | 1 | 0 | |a Stochastic Partial Differential Equations |b A Modeling, White Noise Functional Approach |c by Helge Holden, Bernt Øksendal, Jan Ubøe, Tusheng Zhang |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1996 | |
300 | |a 1 Online-Ressource (XII, 231 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Probability and its Applications | |
500 | |a This book is based on research that, to a large extent, started around 1990, when a research project on fluid flow in stochastic reservoirs was initiated by a group including some of us with the support of VISTA, a research cooperation between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was to use stochastic partial differential equations (SPDEs) to describe the flow of fluid in a medium where some of the parameters, e.g., the permeability, were stochastic or "noisy". We soon realized that the theory of SPDEs at the time was insufficient to handle such equations. Therefore it became our aim to develop a new mathematically rigorous theory that satisfied the following conditions. 1) The theory should be physically meaningful and realistic, and the corresponding solutions should make sense physically and should be useful in applications. 2) The theory should be general enough to handle many of the interesting SPDEs that occur in reservoir theory and related areas. 3) The theory should be strong and efficient enough to allow us to solve these SPDEs explicitly, or at least provide algorithms or approximations for the solutions | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Stochastische partielle Differentialgleichung |0 (DE-588)4135969-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastische partielle Differentialgleichung |0 (DE-588)4135969-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Øksendal, Bernt K. |d 1945- |e Sonstige |0 (DE-588)128742054 |4 oth | |
700 | 1 | |a Ubøe, Jan |d 1959- |e Sonstige |0 (DE-588)171522931 |4 oth | |
700 | 1 | |a Zhang, Tusheng |d 1963- |e Sonstige |0 (DE-588)137051581 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4684-9215-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856590 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093950013440 |
---|---|
any_adam_object | |
author | Holden, Helge 1956- |
author_GND | (DE-588)111693667 (DE-588)128742054 (DE-588)171522931 (DE-588)137051581 |
author_facet | Holden, Helge 1956- |
author_role | aut |
author_sort | Holden, Helge 1956- |
author_variant | h h hh |
building | Verbundindex |
bvnumber | BV042421173 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1186423679 (DE-599)BVBBV042421173 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4684-9215-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03315nmm a2200529zc 4500</leader><controlfield tag="001">BV042421173</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20181017 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468492156</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4684-9215-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468492170</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4684-9217-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-9215-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1186423679</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421173</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Holden, Helge</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)111693667</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic Partial Differential Equations</subfield><subfield code="b">A Modeling, White Noise Functional Approach</subfield><subfield code="c">by Helge Holden, Bernt Øksendal, Jan Ubøe, Tusheng Zhang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 231 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Probability and its Applications</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is based on research that, to a large extent, started around 1990, when a research project on fluid flow in stochastic reservoirs was initiated by a group including some of us with the support of VISTA, a research cooperation between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was to use stochastic partial differential equations (SPDEs) to describe the flow of fluid in a medium where some of the parameters, e.g., the permeability, were stochastic or "noisy". We soon realized that the theory of SPDEs at the time was insufficient to handle such equations. Therefore it became our aim to develop a new mathematically rigorous theory that satisfied the following conditions. 1) The theory should be physically meaningful and realistic, and the corresponding solutions should make sense physically and should be useful in applications. 2) The theory should be general enough to handle many of the interesting SPDEs that occur in reservoir theory and related areas. 3) The theory should be strong and efficient enough to allow us to solve these SPDEs explicitly, or at least provide algorithms or approximations for the solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4135969-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4135969-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Øksendal, Bernt K.</subfield><subfield code="d">1945-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)128742054</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ubøe, Jan</subfield><subfield code="d">1959-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)171522931</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Tusheng</subfield><subfield code="d">1963-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)137051581</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-9215-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856590</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421173 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781468492156 9781468492170 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856590 |
oclc_num | 1186423679 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 231 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Probability and its Applications |
spelling | Holden, Helge 1956- Verfasser (DE-588)111693667 aut Stochastic Partial Differential Equations A Modeling, White Noise Functional Approach by Helge Holden, Bernt Øksendal, Jan Ubøe, Tusheng Zhang Boston, MA Birkhäuser Boston 1996 1 Online-Ressource (XII, 231 p) txt rdacontent c rdamedia cr rdacarrier Probability and its Applications This book is based on research that, to a large extent, started around 1990, when a research project on fluid flow in stochastic reservoirs was initiated by a group including some of us with the support of VISTA, a research cooperation between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was to use stochastic partial differential equations (SPDEs) to describe the flow of fluid in a medium where some of the parameters, e.g., the permeability, were stochastic or "noisy". We soon realized that the theory of SPDEs at the time was insufficient to handle such equations. Therefore it became our aim to develop a new mathematically rigorous theory that satisfied the following conditions. 1) The theory should be physically meaningful and realistic, and the corresponding solutions should make sense physically and should be useful in applications. 2) The theory should be general enough to handle many of the interesting SPDEs that occur in reservoir theory and related areas. 3) The theory should be strong and efficient enough to allow us to solve these SPDEs explicitly, or at least provide algorithms or approximations for the solutions Mathematics Differential equations, partial Distribution (Probability theory) Probability Theory and Stochastic Processes Partial Differential Equations Theoretical, Mathematical and Computational Physics Mathematik Stochastische partielle Differentialgleichung (DE-588)4135969-0 gnd rswk-swf Stochastische partielle Differentialgleichung (DE-588)4135969-0 s 1\p DE-604 Øksendal, Bernt K. 1945- Sonstige (DE-588)128742054 oth Ubøe, Jan 1959- Sonstige (DE-588)171522931 oth Zhang, Tusheng 1963- Sonstige (DE-588)137051581 oth https://doi.org/10.1007/978-1-4684-9215-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Holden, Helge 1956- Stochastic Partial Differential Equations A Modeling, White Noise Functional Approach Mathematics Differential equations, partial Distribution (Probability theory) Probability Theory and Stochastic Processes Partial Differential Equations Theoretical, Mathematical and Computational Physics Mathematik Stochastische partielle Differentialgleichung (DE-588)4135969-0 gnd |
subject_GND | (DE-588)4135969-0 |
title | Stochastic Partial Differential Equations A Modeling, White Noise Functional Approach |
title_auth | Stochastic Partial Differential Equations A Modeling, White Noise Functional Approach |
title_exact_search | Stochastic Partial Differential Equations A Modeling, White Noise Functional Approach |
title_full | Stochastic Partial Differential Equations A Modeling, White Noise Functional Approach by Helge Holden, Bernt Øksendal, Jan Ubøe, Tusheng Zhang |
title_fullStr | Stochastic Partial Differential Equations A Modeling, White Noise Functional Approach by Helge Holden, Bernt Øksendal, Jan Ubøe, Tusheng Zhang |
title_full_unstemmed | Stochastic Partial Differential Equations A Modeling, White Noise Functional Approach by Helge Holden, Bernt Øksendal, Jan Ubøe, Tusheng Zhang |
title_short | Stochastic Partial Differential Equations |
title_sort | stochastic partial differential equations a modeling white noise functional approach |
title_sub | A Modeling, White Noise Functional Approach |
topic | Mathematics Differential equations, partial Distribution (Probability theory) Probability Theory and Stochastic Processes Partial Differential Equations Theoretical, Mathematical and Computational Physics Mathematik Stochastische partielle Differentialgleichung (DE-588)4135969-0 gnd |
topic_facet | Mathematics Differential equations, partial Distribution (Probability theory) Probability Theory and Stochastic Processes Partial Differential Equations Theoretical, Mathematical and Computational Physics Mathematik Stochastische partielle Differentialgleichung |
url | https://doi.org/10.1007/978-1-4684-9215-6 |
work_keys_str_mv | AT holdenhelge stochasticpartialdifferentialequationsamodelingwhitenoisefunctionalapproach AT øksendalberntk stochasticpartialdifferentialequationsamodelingwhitenoisefunctionalapproach AT ubøejan stochasticpartialdifferentialequationsamodelingwhitenoisefunctionalapproach AT zhangtusheng stochasticpartialdifferentialequationsamodelingwhitenoisefunctionalapproach |