Ergodic Theory of Random Transformations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1986
|
Schriftenreihe: | Progress in Probability and Statistics
10 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Ergodic theory of dynamical systems i.e., the qualitative analysis of iterations of a single transformation is nowadays a well developed theory. In 1945 S. Ulam and J. von Neumann in their short note [44] suggested to study ergodic theorems for the more general situation when one applies in turn different transformations chosen at random. Their program was fulfilled by S. Kakutani [23] in 1951. Both papers considered the case of transformations with a common invariant measure. Recently Ohno [38] noticed that this condition was excessive. Ergodic theorems are just the beginning of ergodic theory. Among further major developments are the notions of entropy and characteristic exponents. The purpose of this book is the study of the variety of ergodic theoretical properties of evolution processes generated by independent applications of transformations chosen at random from a certain class according to some probability distribution. The book exhibits the first systematic treatment of ergodic theory of random transformations i.e., an analysis of composed actions of independent random maps. This set up allows a unified approach to many problems of dynamical systems, products of random matrices and stochastic flows generated by stochastic differential equations |
Beschreibung: | 1 Online-Ressource (X, 210p) |
ISBN: | 9781468491753 9781468491777 |
DOI: | 10.1007/978-1-4684-9175-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421168 | ||
003 | DE-604 | ||
005 | 20180109 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1986 |||| o||u| ||||||eng d | ||
020 | |a 9781468491753 |c Online |9 978-1-4684-9175-3 | ||
020 | |a 9781468491777 |c Print |9 978-1-4684-9177-7 | ||
024 | 7 | |a 10.1007/978-1-4684-9175-3 |2 doi | |
035 | |a (OCoLC)1185329926 | ||
035 | |a (DE-599)BVBBV042421168 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.48 |2 23 | |
082 | 0 | |a 515.39 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kifer, Yuri |e Verfasser |4 aut | |
245 | 1 | 0 | |a Ergodic Theory of Random Transformations |c by Yuri Kifer |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1986 | |
300 | |a 1 Online-Ressource (X, 210p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in Probability and Statistics |v 10 | |
500 | |a Ergodic theory of dynamical systems i.e., the qualitative analysis of iterations of a single transformation is nowadays a well developed theory. In 1945 S. Ulam and J. von Neumann in their short note [44] suggested to study ergodic theorems for the more general situation when one applies in turn different transformations chosen at random. Their program was fulfilled by S. Kakutani [23] in 1951. Both papers considered the case of transformations with a common invariant measure. Recently Ohno [38] noticed that this condition was excessive. Ergodic theorems are just the beginning of ergodic theory. Among further major developments are the notions of entropy and characteristic exponents. The purpose of this book is the study of the variety of ergodic theoretical properties of evolution processes generated by independent applications of transformations chosen at random from a certain class according to some probability distribution. The book exhibits the first systematic treatment of ergodic theory of random transformations i.e., an analysis of composed actions of independent random maps. This set up allows a unified approach to many problems of dynamical systems, products of random matrices and stochastic flows generated by stochastic differential equations | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Matrix theory | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Dynamical Systems and Ergodic Theory | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Linear and Multilinear Algebras, Matrix Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Ergodentheorie |0 (DE-588)4015246-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differenzierbares dynamisches System |0 (DE-588)4137931-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zufallsvariable |0 (DE-588)4129514-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ergodentheorie |0 (DE-588)4015246-7 |D s |
689 | 0 | 1 | |a Zufallsvariable |0 (DE-588)4129514-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Ergodentheorie |0 (DE-588)4015246-7 |D s |
689 | 1 | 1 | |a Differenzierbares dynamisches System |0 (DE-588)4137931-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
830 | 0 | |a Progress in Probability and Statistics |v 10 |w (DE-604)BV000010596 |9 10 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4684-9175-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856585 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093936381952 |
---|---|
any_adam_object | |
author | Kifer, Yuri |
author_facet | Kifer, Yuri |
author_role | aut |
author_sort | Kifer, Yuri |
author_variant | y k yk |
building | Verbundindex |
bvnumber | BV042421168 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1185329926 (DE-599)BVBBV042421168 |
dewey-full | 515.48 515.39 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.48 515.39 |
dewey-search | 515.48 515.39 |
dewey-sort | 3515.48 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4684-9175-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03669nmm a2200637zcb4500</leader><controlfield tag="001">BV042421168</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180109 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1986 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468491753</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4684-9175-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468491777</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4684-9177-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-9175-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1185329926</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421168</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.48</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.39</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kifer, Yuri</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ergodic Theory of Random Transformations</subfield><subfield code="c">by Yuri Kifer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 210p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Probability and Statistics</subfield><subfield code="v">10</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Ergodic theory of dynamical systems i.e., the qualitative analysis of iterations of a single transformation is nowadays a well developed theory. In 1945 S. Ulam and J. von Neumann in their short note [44] suggested to study ergodic theorems for the more general situation when one applies in turn different transformations chosen at random. Their program was fulfilled by S. Kakutani [23] in 1951. Both papers considered the case of transformations with a common invariant measure. Recently Ohno [38] noticed that this condition was excessive. Ergodic theorems are just the beginning of ergodic theory. Among further major developments are the notions of entropy and characteristic exponents. The purpose of this book is the study of the variety of ergodic theoretical properties of evolution processes generated by independent applications of transformations chosen at random from a certain class according to some probability distribution. The book exhibits the first systematic treatment of ergodic theory of random transformations i.e., an analysis of composed actions of independent random maps. This set up allows a unified approach to many problems of dynamical systems, products of random matrices and stochastic flows generated by stochastic differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical Systems and Ergodic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear and Multilinear Algebras, Matrix Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ergodentheorie</subfield><subfield code="0">(DE-588)4015246-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbares dynamisches System</subfield><subfield code="0">(DE-588)4137931-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zufallsvariable</subfield><subfield code="0">(DE-588)4129514-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ergodentheorie</subfield><subfield code="0">(DE-588)4015246-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zufallsvariable</subfield><subfield code="0">(DE-588)4129514-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Ergodentheorie</subfield><subfield code="0">(DE-588)4015246-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Differenzierbares dynamisches System</subfield><subfield code="0">(DE-588)4137931-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Probability and Statistics</subfield><subfield code="v">10</subfield><subfield code="w">(DE-604)BV000010596</subfield><subfield code="9">10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-9175-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856585</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421168 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781468491753 9781468491777 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856585 |
oclc_num | 1185329926 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 210p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Birkhäuser Boston |
record_format | marc |
series | Progress in Probability and Statistics |
series2 | Progress in Probability and Statistics |
spelling | Kifer, Yuri Verfasser aut Ergodic Theory of Random Transformations by Yuri Kifer Boston, MA Birkhäuser Boston 1986 1 Online-Ressource (X, 210p) txt rdacontent c rdamedia cr rdacarrier Progress in Probability and Statistics 10 Ergodic theory of dynamical systems i.e., the qualitative analysis of iterations of a single transformation is nowadays a well developed theory. In 1945 S. Ulam and J. von Neumann in their short note [44] suggested to study ergodic theorems for the more general situation when one applies in turn different transformations chosen at random. Their program was fulfilled by S. Kakutani [23] in 1951. Both papers considered the case of transformations with a common invariant measure. Recently Ohno [38] noticed that this condition was excessive. Ergodic theorems are just the beginning of ergodic theory. Among further major developments are the notions of entropy and characteristic exponents. The purpose of this book is the study of the variety of ergodic theoretical properties of evolution processes generated by independent applications of transformations chosen at random from a certain class according to some probability distribution. The book exhibits the first systematic treatment of ergodic theory of random transformations i.e., an analysis of composed actions of independent random maps. This set up allows a unified approach to many problems of dynamical systems, products of random matrices and stochastic flows generated by stochastic differential equations Mathematics Matrix theory Differentiable dynamical systems Differential equations, partial Distribution (Probability theory) Dynamical Systems and Ergodic Theory Probability Theory and Stochastic Processes Partial Differential Equations Linear and Multilinear Algebras, Matrix Theory Mathematik Ergodentheorie (DE-588)4015246-7 gnd rswk-swf Differenzierbares dynamisches System (DE-588)4137931-7 gnd rswk-swf Zufallsvariable (DE-588)4129514-6 gnd rswk-swf Ergodentheorie (DE-588)4015246-7 s Zufallsvariable (DE-588)4129514-6 s 1\p DE-604 Differenzierbares dynamisches System (DE-588)4137931-7 s 2\p DE-604 Progress in Probability and Statistics 10 (DE-604)BV000010596 10 https://doi.org/10.1007/978-1-4684-9175-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kifer, Yuri Ergodic Theory of Random Transformations Progress in Probability and Statistics Mathematics Matrix theory Differentiable dynamical systems Differential equations, partial Distribution (Probability theory) Dynamical Systems and Ergodic Theory Probability Theory and Stochastic Processes Partial Differential Equations Linear and Multilinear Algebras, Matrix Theory Mathematik Ergodentheorie (DE-588)4015246-7 gnd Differenzierbares dynamisches System (DE-588)4137931-7 gnd Zufallsvariable (DE-588)4129514-6 gnd |
subject_GND | (DE-588)4015246-7 (DE-588)4137931-7 (DE-588)4129514-6 |
title | Ergodic Theory of Random Transformations |
title_auth | Ergodic Theory of Random Transformations |
title_exact_search | Ergodic Theory of Random Transformations |
title_full | Ergodic Theory of Random Transformations by Yuri Kifer |
title_fullStr | Ergodic Theory of Random Transformations by Yuri Kifer |
title_full_unstemmed | Ergodic Theory of Random Transformations by Yuri Kifer |
title_short | Ergodic Theory of Random Transformations |
title_sort | ergodic theory of random transformations |
topic | Mathematics Matrix theory Differentiable dynamical systems Differential equations, partial Distribution (Probability theory) Dynamical Systems and Ergodic Theory Probability Theory and Stochastic Processes Partial Differential Equations Linear and Multilinear Algebras, Matrix Theory Mathematik Ergodentheorie (DE-588)4015246-7 gnd Differenzierbares dynamisches System (DE-588)4137931-7 gnd Zufallsvariable (DE-588)4129514-6 gnd |
topic_facet | Mathematics Matrix theory Differentiable dynamical systems Differential equations, partial Distribution (Probability theory) Dynamical Systems and Ergodic Theory Probability Theory and Stochastic Processes Partial Differential Equations Linear and Multilinear Algebras, Matrix Theory Mathematik Ergodentheorie Differenzierbares dynamisches System Zufallsvariable |
url | https://doi.org/10.1007/978-1-4684-9175-3 |
volume_link | (DE-604)BV000010596 |
work_keys_str_mv | AT kiferyuri ergodictheoryofrandomtransformations |