Products of Random Matrices with Applications to Schrödinger Operators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1985
|
Schriftenreihe: | Progress in Probability and Statistics
8 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | CHAPTER I THE DETERMINISTIC SCHRODINGER OPERATOR 187 1. The difference equation. Hyperbolic structures 187 2. Self adjointness of H. Spectral properties . 190 3. Slowly increasing generalized eigenfunctions 195 4. Approximations of the spectral measure 196 200 5. The pure point spectrum. A criterion 6. Singularity of the spectrum 202 CHAPTER II ERGODIC SCHRÖDINGER OPERATORS 205 1. Definition and examples 205 2. General spectral properties 206 3. The Lyapunov exponent in the general ergodie case 209 4. The Lyapunov exponent in the independent eas e 211 5. Absence of absolutely continuous spectrum 221 224 6. Distribution of states. Thouless formula 232 7. The pure point spectrum. Kotani's criterion 8. Asymptotic properties of the conductance in 234 the disordered wire CHAPTER III THE PURE POINT SPECTRUM 237 238 1. The pure point spectrum. First proof 240 2. The Laplace transform on SI(2,JR) 247 3. The pure point spectrum. Second proof 250 4. The density of states CHAPTER IV SCHRÖDINGER OPERATORS IN A STRIP 2';3 1. The deterministic Schrödinger operator in 253 a strip 259 2. Ergodie Schrödinger operators in a strip 3. Lyapunov exponents in the independent case. 262 The pure point spectrum (first proof) 267 4. The Laplace transform on Sp(~,JR) 272 5. The pure point spectrum, second proof vii APPENDIX 275 BIBLIOGRAPHY 277 viii PREFACE This book presents two elosely related series of leetures. Part A, due to P. |
Beschreibung: | 1 Online-Ressource (XI, 284 p) |
ISBN: | 9781468491722 9781468491746 |
DOI: | 10.1007/978-1-4684-9172-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421167 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1985 |||| o||u| ||||||eng d | ||
020 | |a 9781468491722 |c Online |9 978-1-4684-9172-2 | ||
020 | |a 9781468491746 |c Print |9 978-1-4684-9174-6 | ||
024 | 7 | |a 10.1007/978-1-4684-9172-2 |2 doi | |
035 | |a (OCoLC)905449342 | ||
035 | |a (DE-599)BVBBV042421167 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bougerol, Philippe |e Verfasser |4 aut | |
245 | 1 | 0 | |a Products of Random Matrices with Applications to Schrödinger Operators |c edited by Philippe Bougerol, Jean Lacroix |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1985 | |
300 | |a 1 Online-Ressource (XI, 284 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Probability and Statistics |v 8 | |
500 | |a CHAPTER I THE DETERMINISTIC SCHRODINGER OPERATOR 187 1. The difference equation. Hyperbolic structures 187 2. Self adjointness of H. Spectral properties . 190 3. Slowly increasing generalized eigenfunctions 195 4. Approximations of the spectral measure 196 200 5. The pure point spectrum. A criterion 6. Singularity of the spectrum 202 CHAPTER II ERGODIC SCHRÖDINGER OPERATORS 205 1. Definition and examples 205 2. General spectral properties 206 3. The Lyapunov exponent in the general ergodie case 209 4. The Lyapunov exponent in the independent eas e 211 5. Absence of absolutely continuous spectrum 221 224 6. Distribution of states. Thouless formula 232 7. The pure point spectrum. Kotani's criterion 8. Asymptotic properties of the conductance in 234 the disordered wire CHAPTER III THE PURE POINT SPECTRUM 237 238 1. The pure point spectrum. First proof 240 2. The Laplace transform on SI(2,JR) 247 3. The pure point spectrum. Second proof 250 4. The density of states CHAPTER IV SCHRÖDINGER OPERATORS IN A STRIP 2';3 1. The deterministic Schrödinger operator in 253 a strip 259 2. Ergodie Schrödinger operators in a strip 3. Lyapunov exponents in the independent case. 262 The pure point spectrum (first proof) 267 4. The Laplace transform on Sp(~,JR) 272 5. The pure point spectrum, second proof vii APPENDIX 275 BIBLIOGRAPHY 277 viii PREFACE This book presents two elosely related series of leetures. Part A, due to P. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Matrix theory | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Linear and Multilinear Algebras, Matrix Theory | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Hamilton-Operator |0 (DE-588)4072278-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastische Matrix |0 (DE-588)4057624-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastische Matrix |0 (DE-588)4057624-3 |D s |
689 | 0 | 1 | |a Hamilton-Operator |0 (DE-588)4072278-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Lacroix, Jean |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4684-9172-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856584 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093936381952 |
---|---|
any_adam_object | |
author | Bougerol, Philippe |
author_facet | Bougerol, Philippe |
author_role | aut |
author_sort | Bougerol, Philippe |
author_variant | p b pb |
building | Verbundindex |
bvnumber | BV042421167 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)905449342 (DE-599)BVBBV042421167 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4684-9172-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03412nmm a2200541zcb4500</leader><controlfield tag="001">BV042421167</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468491722</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4684-9172-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468491746</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4684-9174-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-9172-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905449342</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421167</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bougerol, Philippe</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Products of Random Matrices with Applications to Schrödinger Operators</subfield><subfield code="c">edited by Philippe Bougerol, Jean Lacroix</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 284 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Probability and Statistics</subfield><subfield code="v">8</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">CHAPTER I THE DETERMINISTIC SCHRODINGER OPERATOR 187 1. The difference equation. Hyperbolic structures 187 2. Self adjointness of H. Spectral properties . 190 3. Slowly increasing generalized eigenfunctions 195 4. Approximations of the spectral measure 196 200 5. The pure point spectrum. A criterion 6. Singularity of the spectrum 202 CHAPTER II ERGODIC SCHRÖDINGER OPERATORS 205 1. Definition and examples 205 2. General spectral properties 206 3. The Lyapunov exponent in the general ergodie case 209 4. The Lyapunov exponent in the independent eas e 211 5. Absence of absolutely continuous spectrum 221 224 6. Distribution of states. Thouless formula 232 7. The pure point spectrum. Kotani's criterion 8. Asymptotic properties of the conductance in 234 the disordered wire CHAPTER III THE PURE POINT SPECTRUM 237 238 1. The pure point spectrum. First proof 240 2. The Laplace transform on SI(2,JR) 247 3. The pure point spectrum. Second proof 250 4. The density of states CHAPTER IV SCHRÖDINGER OPERATORS IN A STRIP 2';3 1. The deterministic Schrödinger operator in 253 a strip 259 2. Ergodie Schrödinger operators in a strip 3. Lyapunov exponents in the independent case. 262 The pure point spectrum (first proof) 267 4. The Laplace transform on Sp(~,JR) 272 5. The pure point spectrum, second proof vii APPENDIX 275 BIBLIOGRAPHY 277 viii PREFACE This book presents two elosely related series of leetures. Part A, due to P.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear and Multilinear Algebras, Matrix Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Matrix</subfield><subfield code="0">(DE-588)4057624-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Matrix</subfield><subfield code="0">(DE-588)4057624-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lacroix, Jean</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-9172-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856584</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421167 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781468491722 9781468491746 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856584 |
oclc_num | 905449342 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 284 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Probability and Statistics |
spelling | Bougerol, Philippe Verfasser aut Products of Random Matrices with Applications to Schrödinger Operators edited by Philippe Bougerol, Jean Lacroix Boston, MA Birkhäuser Boston 1985 1 Online-Ressource (XI, 284 p) txt rdacontent c rdamedia cr rdacarrier Progress in Probability and Statistics 8 CHAPTER I THE DETERMINISTIC SCHRODINGER OPERATOR 187 1. The difference equation. Hyperbolic structures 187 2. Self adjointness of H. Spectral properties . 190 3. Slowly increasing generalized eigenfunctions 195 4. Approximations of the spectral measure 196 200 5. The pure point spectrum. A criterion 6. Singularity of the spectrum 202 CHAPTER II ERGODIC SCHRÖDINGER OPERATORS 205 1. Definition and examples 205 2. General spectral properties 206 3. The Lyapunov exponent in the general ergodie case 209 4. The Lyapunov exponent in the independent eas e 211 5. Absence of absolutely continuous spectrum 221 224 6. Distribution of states. Thouless formula 232 7. The pure point spectrum. Kotani's criterion 8. Asymptotic properties of the conductance in 234 the disordered wire CHAPTER III THE PURE POINT SPECTRUM 237 238 1. The pure point spectrum. First proof 240 2. The Laplace transform on SI(2,JR) 247 3. The pure point spectrum. Second proof 250 4. The density of states CHAPTER IV SCHRÖDINGER OPERATORS IN A STRIP 2';3 1. The deterministic Schrödinger operator in 253 a strip 259 2. Ergodie Schrödinger operators in a strip 3. Lyapunov exponents in the independent case. 262 The pure point spectrum (first proof) 267 4. The Laplace transform on Sp(~,JR) 272 5. The pure point spectrum, second proof vii APPENDIX 275 BIBLIOGRAPHY 277 viii PREFACE This book presents two elosely related series of leetures. Part A, due to P. Mathematics Matrix theory Differential equations, partial Distribution (Probability theory) Probability Theory and Stochastic Processes Linear and Multilinear Algebras, Matrix Theory Partial Differential Equations Mathematik Hamilton-Operator (DE-588)4072278-8 gnd rswk-swf Stochastische Matrix (DE-588)4057624-3 gnd rswk-swf Stochastische Matrix (DE-588)4057624-3 s Hamilton-Operator (DE-588)4072278-8 s 1\p DE-604 Lacroix, Jean Sonstige oth https://doi.org/10.1007/978-1-4684-9172-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bougerol, Philippe Products of Random Matrices with Applications to Schrödinger Operators Mathematics Matrix theory Differential equations, partial Distribution (Probability theory) Probability Theory and Stochastic Processes Linear and Multilinear Algebras, Matrix Theory Partial Differential Equations Mathematik Hamilton-Operator (DE-588)4072278-8 gnd Stochastische Matrix (DE-588)4057624-3 gnd |
subject_GND | (DE-588)4072278-8 (DE-588)4057624-3 |
title | Products of Random Matrices with Applications to Schrödinger Operators |
title_auth | Products of Random Matrices with Applications to Schrödinger Operators |
title_exact_search | Products of Random Matrices with Applications to Schrödinger Operators |
title_full | Products of Random Matrices with Applications to Schrödinger Operators edited by Philippe Bougerol, Jean Lacroix |
title_fullStr | Products of Random Matrices with Applications to Schrödinger Operators edited by Philippe Bougerol, Jean Lacroix |
title_full_unstemmed | Products of Random Matrices with Applications to Schrödinger Operators edited by Philippe Bougerol, Jean Lacroix |
title_short | Products of Random Matrices with Applications to Schrödinger Operators |
title_sort | products of random matrices with applications to schrodinger operators |
topic | Mathematics Matrix theory Differential equations, partial Distribution (Probability theory) Probability Theory and Stochastic Processes Linear and Multilinear Algebras, Matrix Theory Partial Differential Equations Mathematik Hamilton-Operator (DE-588)4072278-8 gnd Stochastische Matrix (DE-588)4057624-3 gnd |
topic_facet | Mathematics Matrix theory Differential equations, partial Distribution (Probability theory) Probability Theory and Stochastic Processes Linear and Multilinear Algebras, Matrix Theory Partial Differential Equations Mathematik Hamilton-Operator Stochastische Matrix |
url | https://doi.org/10.1007/978-1-4684-9172-2 |
work_keys_str_mv | AT bougerolphilippe productsofrandommatriceswithapplicationstoschrodingeroperators AT lacroixjean productsofrandommatriceswithapplicationstoschrodingeroperators |