The Theory of Jacobi Forms:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1985
|
Schriftenreihe: | Progress in Mathematics
55 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The functions studied in this monogra9h are a cross between elliptic functions and modular forms in one variable. Specifically, we define a Jacobi form on SL (~) to be a holomorphic function 2 (JC = upper half-plane) satisfying the t\-10 transformation eouations 2Tiimcz· k CT +d a-r +b z ) (1) ( (cT+d) e cp(T,z) cp CT +d ' CT +d (2) rjl(T, z+h+]l) and having a Four·ier expansion of the form 00 e2Tii(nT +rz) (3) cp(T,z) 2: c(n,r) 2:: rE~ n=O 2 r ~ 4nm Here k and m are natural numbers, called the weight and index of rp, respectively. Note that th e function cp (T, 0) is an ordinary modular formofweight k, whileforfixed T thefunction z-+rjl(-r,z) isa function of the type normally used to embed the elliptic curve ~/~T + ~ into a projective space. If m= 0, then cp is independent of z and the definition reduces to the usual notion of modular forms in one variable. We give three other examples of situations where functions satisfying (1)-(3) arise classically: 1. Theta series. Let Q: ~-+ ~ be a positive definite integer valued quadratic form and B the associated bilinear form |
Beschreibung: | 1 Online-Ressource (V, 150 p) |
ISBN: | 9781468491623 9781468491647 |
ISSN: | 0743-1643 |
DOI: | 10.1007/978-1-4684-9162-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421163 | ||
003 | DE-604 | ||
005 | 20160916 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1985 |||| o||u| ||||||eng d | ||
020 | |a 9781468491623 |c Online |9 978-1-4684-9162-3 | ||
020 | |a 9781468491647 |c Print |9 978-1-4684-9164-7 | ||
024 | 7 | |a 10.1007/978-1-4684-9162-3 |2 doi | |
035 | |a (OCoLC)879624690 | ||
035 | |a (DE-599)BVBBV042421163 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Eichler, Martin |d 1912-1992 |e Verfasser |0 (DE-588)117709751 |4 aut | |
245 | 1 | 0 | |a The Theory of Jacobi Forms |c by Martin Eichler, Don Zagier |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1985 | |
300 | |a 1 Online-Ressource (V, 150 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 55 |x 0743-1643 | |
500 | |a The functions studied in this monogra9h are a cross between elliptic functions and modular forms in one variable. Specifically, we define a Jacobi form on SL (~) to be a holomorphic function 2 (JC = upper half-plane) satisfying the t\-10 transformation eouations 2Tiimcz· k CT +d a-r +b z ) (1) ( (cT+d) e cp(T,z) cp CT +d ' CT +d (2) rjl(T, z+h+]l) and having a Four·ier expansion of the form 00 e2Tii(nT +rz) (3) cp(T,z) 2: c(n,r) 2:: rE~ n=O 2 r ~ 4nm Here k and m are natural numbers, called the weight and index of rp, respectively. Note that th e function cp (T, 0) is an ordinary modular formofweight k, whileforfixed T thefunction z-+rjl(-r,z) isa function of the type normally used to embed the elliptic curve ~/~T + ~ into a projective space. If m= 0, then cp is independent of z and the definition reduces to the usual notion of modular forms in one variable. We give three other examples of situations where functions satisfying (1)-(3) arise classically: 1. Theta series. Let Q: ~-+ ~ be a positive definite integer valued quadratic form and B the associated bilinear form | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Group theory | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Elliptische Funktion |0 (DE-588)4134665-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Jacobi-Form |0 (DE-588)4319811-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modulform |0 (DE-588)4128299-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Holomorphe Funktion |0 (DE-588)4025645-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Jacobische elliptische Funktion |0 (DE-588)4162644-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Holomorphe Funktion |0 (DE-588)4025645-5 |D s |
689 | 0 | 1 | |a Elliptische Funktion |0 (DE-588)4134665-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Modulform |0 (DE-588)4128299-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Jacobische elliptische Funktion |0 (DE-588)4162644-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Jacobi-Form |0 (DE-588)4319811-9 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
700 | 1 | |a Zagier, Don |d 1951- |e Sonstige |0 (DE-588)120415569 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4684-9162-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856580 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093927993344 |
---|---|
any_adam_object | |
author | Eichler, Martin 1912-1992 |
author_GND | (DE-588)117709751 (DE-588)120415569 |
author_facet | Eichler, Martin 1912-1992 |
author_role | aut |
author_sort | Eichler, Martin 1912-1992 |
author_variant | m e me |
building | Verbundindex |
bvnumber | BV042421163 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879624690 (DE-599)BVBBV042421163 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4684-9162-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03762nmm a2200709zcb4500</leader><controlfield tag="001">BV042421163</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160916 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468491623</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4684-9162-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468491647</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4684-9164-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-9162-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421163</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eichler, Martin</subfield><subfield code="d">1912-1992</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)117709751</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Theory of Jacobi Forms</subfield><subfield code="c">by Martin Eichler, Don Zagier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (V, 150 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">55</subfield><subfield code="x">0743-1643</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The functions studied in this monogra9h are a cross between elliptic functions and modular forms in one variable. Specifically, we define a Jacobi form on SL (~) to be a holomorphic function 2 (JC = upper half-plane) satisfying the t\-10 transformation eouations 2Tiimcz· k CT +d a-r +b z ) (1) ( (cT+d) e cp(T,z) cp CT +d ' CT +d (2) rjl(T, z+h+]l) and having a Four·ier expansion of the form 00 e2Tii(nT +rz) (3) cp(T,z) 2: c(n,r) 2:: rE~ n=O 2 r ~ 4nm Here k and m are natural numbers, called the weight and index of rp, respectively. Note that th e function cp (T, 0) is an ordinary modular formofweight k, whileforfixed T thefunction z-+rjl(-r,z) isa function of the type normally used to embed the elliptic curve ~/~T + ~ into a projective space. If m= 0, then cp is independent of z and the definition reduces to the usual notion of modular forms in one variable. We give three other examples of situations where functions satisfying (1)-(3) arise classically: 1. Theta series. Let Q: ~-+ ~ be a positive definite integer valued quadratic form and B the associated bilinear form</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Funktion</subfield><subfield code="0">(DE-588)4134665-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Jacobi-Form</subfield><subfield code="0">(DE-588)4319811-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulform</subfield><subfield code="0">(DE-588)4128299-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphe Funktion</subfield><subfield code="0">(DE-588)4025645-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Jacobische elliptische Funktion</subfield><subfield code="0">(DE-588)4162644-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Holomorphe Funktion</subfield><subfield code="0">(DE-588)4025645-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elliptische Funktion</subfield><subfield code="0">(DE-588)4134665-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Modulform</subfield><subfield code="0">(DE-588)4128299-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Jacobische elliptische Funktion</subfield><subfield code="0">(DE-588)4162644-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Jacobi-Form</subfield><subfield code="0">(DE-588)4319811-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zagier, Don</subfield><subfield code="d">1951-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)120415569</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-9162-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856580</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421163 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781468491623 9781468491647 |
issn | 0743-1643 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856580 |
oclc_num | 879624690 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (V, 150 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Eichler, Martin 1912-1992 Verfasser (DE-588)117709751 aut The Theory of Jacobi Forms by Martin Eichler, Don Zagier Boston, MA Birkhäuser Boston 1985 1 Online-Ressource (V, 150 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 55 0743-1643 The functions studied in this monogra9h are a cross between elliptic functions and modular forms in one variable. Specifically, we define a Jacobi form on SL (~) to be a holomorphic function 2 (JC = upper half-plane) satisfying the t\-10 transformation eouations 2Tiimcz· k CT +d a-r +b z ) (1) ( (cT+d) e cp(T,z) cp CT +d ' CT +d (2) rjl(T, z+h+]l) and having a Four·ier expansion of the form 00 e2Tii(nT +rz) (3) cp(T,z) 2: c(n,r) 2:: rE~ n=O 2 r ~ 4nm Here k and m are natural numbers, called the weight and index of rp, respectively. Note that th e function cp (T, 0) is an ordinary modular formofweight k, whileforfixed T thefunction z-+rjl(-r,z) isa function of the type normally used to embed the elliptic curve ~/~T + ~ into a projective space. If m= 0, then cp is independent of z and the definition reduces to the usual notion of modular forms in one variable. We give three other examples of situations where functions satisfying (1)-(3) arise classically: 1. Theta series. Let Q: ~-+ ~ be a positive definite integer valued quadratic form and B the associated bilinear form Mathematics Geometry, algebraic Group theory Functional analysis Number theory Number Theory Algebraic Geometry Group Theory and Generalizations Functional Analysis Mathematik Elliptische Funktion (DE-588)4134665-8 gnd rswk-swf Jacobi-Form (DE-588)4319811-9 gnd rswk-swf Modulform (DE-588)4128299-1 gnd rswk-swf Holomorphe Funktion (DE-588)4025645-5 gnd rswk-swf Jacobische elliptische Funktion (DE-588)4162644-8 gnd rswk-swf Holomorphe Funktion (DE-588)4025645-5 s Elliptische Funktion (DE-588)4134665-8 s 1\p DE-604 Modulform (DE-588)4128299-1 s 2\p DE-604 Jacobische elliptische Funktion (DE-588)4162644-8 s 3\p DE-604 Jacobi-Form (DE-588)4319811-9 s 4\p DE-604 Zagier, Don 1951- Sonstige (DE-588)120415569 oth https://doi.org/10.1007/978-1-4684-9162-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Eichler, Martin 1912-1992 The Theory of Jacobi Forms Mathematics Geometry, algebraic Group theory Functional analysis Number theory Number Theory Algebraic Geometry Group Theory and Generalizations Functional Analysis Mathematik Elliptische Funktion (DE-588)4134665-8 gnd Jacobi-Form (DE-588)4319811-9 gnd Modulform (DE-588)4128299-1 gnd Holomorphe Funktion (DE-588)4025645-5 gnd Jacobische elliptische Funktion (DE-588)4162644-8 gnd |
subject_GND | (DE-588)4134665-8 (DE-588)4319811-9 (DE-588)4128299-1 (DE-588)4025645-5 (DE-588)4162644-8 |
title | The Theory of Jacobi Forms |
title_auth | The Theory of Jacobi Forms |
title_exact_search | The Theory of Jacobi Forms |
title_full | The Theory of Jacobi Forms by Martin Eichler, Don Zagier |
title_fullStr | The Theory of Jacobi Forms by Martin Eichler, Don Zagier |
title_full_unstemmed | The Theory of Jacobi Forms by Martin Eichler, Don Zagier |
title_short | The Theory of Jacobi Forms |
title_sort | the theory of jacobi forms |
topic | Mathematics Geometry, algebraic Group theory Functional analysis Number theory Number Theory Algebraic Geometry Group Theory and Generalizations Functional Analysis Mathematik Elliptische Funktion (DE-588)4134665-8 gnd Jacobi-Form (DE-588)4319811-9 gnd Modulform (DE-588)4128299-1 gnd Holomorphe Funktion (DE-588)4025645-5 gnd Jacobische elliptische Funktion (DE-588)4162644-8 gnd |
topic_facet | Mathematics Geometry, algebraic Group theory Functional analysis Number theory Number Theory Algebraic Geometry Group Theory and Generalizations Functional Analysis Mathematik Elliptische Funktion Jacobi-Form Modulform Holomorphe Funktion Jacobische elliptische Funktion |
url | https://doi.org/10.1007/978-1-4684-9162-3 |
work_keys_str_mv | AT eichlermartin thetheoryofjacobiforms AT zagierdon thetheoryofjacobiforms |