Cohomology of Infinite-Dimensional Lie Algebras:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1986
|
Schriftenreihe: | Contemporary Soviet Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | There is no question that the cohomology of infinitedimensional Lie algebras deserves a brief and separate monograph. This subject is not covered by any of the traditional branches of mathematics and is characterized by relatively elementary proofs and varied application. Moreover, the subject matter is widely scattered in various research papers or exists only in verbal form. The theory of infinite-dimensional Lie algebras differs markedly from the theory of finite-dimensional Lie algebras in that the latter possesses powerful classification theorems, which usually allow one to "recognize" any finitedimensional Lie algebra (over the field of complex or real numbers), i.e., find it in some list. There are classification theorems in the theory of infinite-dimensional Lie algebras as well, but they are encumbered by strong restrictions of a technical character. These theorems are useful mainly because they yield a considerable supply of interesting examples. We begin with a list of such examples, and further direct our main efforts to their study |
Beschreibung: | 1 Online-Ressource (352p) |
ISBN: | 9781468487657 9781468487671 |
DOI: | 10.1007/978-1-4684-8765-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421153 | ||
003 | DE-604 | ||
005 | 20181211 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1986 |||| o||u| ||||||eng d | ||
020 | |a 9781468487657 |c Online |9 978-1-4684-8765-7 | ||
020 | |a 9781468487671 |c Print |9 978-1-4684-8767-1 | ||
024 | 7 | |a 10.1007/978-1-4684-8765-7 |2 doi | |
035 | |a (OCoLC)905422416 | ||
035 | |a (DE-599)BVBBV042421153 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Fuks, Dmitrij B. |d 1939- |e Verfasser |0 (DE-588)110261984 |4 aut | |
245 | 1 | 0 | |a Cohomology of Infinite-Dimensional Lie Algebras |c by D. B. Fuks |
264 | 1 | |a Boston, MA |b Springer US |c 1986 | |
300 | |a 1 Online-Ressource (352p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Contemporary Soviet Mathematics | |
500 | |a There is no question that the cohomology of infinitedimensional Lie algebras deserves a brief and separate monograph. This subject is not covered by any of the traditional branches of mathematics and is characterized by relatively elementary proofs and varied application. Moreover, the subject matter is widely scattered in various research papers or exists only in verbal form. The theory of infinite-dimensional Lie algebras differs markedly from the theory of finite-dimensional Lie algebras in that the latter possesses powerful classification theorems, which usually allow one to "recognize" any finitedimensional Lie algebra (over the field of complex or real numbers), i.e., find it in some list. There are classification theorems in the theory of infinite-dimensional Lie algebras as well, but they are encumbered by strong restrictions of a technical character. These theorems are useful mainly because they yield a considerable supply of interesting examples. We begin with a list of such examples, and further direct our main efforts to their study | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unendlichdimensionale Lie-Algebra |0 (DE-588)4434344-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kohomologie |0 (DE-588)4031700-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Unendlichdimensionale Lie-Algebra |0 (DE-588)4434344-9 |D s |
689 | 0 | 1 | |a Kohomologie |0 (DE-588)4031700-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 1 | 1 | |a Kohomologie |0 (DE-588)4031700-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4684-8765-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856570 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093907021824 |
---|---|
any_adam_object | |
author | Fuks, Dmitrij B. 1939- |
author_GND | (DE-588)110261984 |
author_facet | Fuks, Dmitrij B. 1939- |
author_role | aut |
author_sort | Fuks, Dmitrij B. 1939- |
author_variant | d b f db dbf |
building | Verbundindex |
bvnumber | BV042421153 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)905422416 (DE-599)BVBBV042421153 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4684-8765-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02976nmm a2200529zc 4500</leader><controlfield tag="001">BV042421153</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20181211 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1986 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468487657</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4684-8765-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468487671</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4684-8767-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-8765-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905422416</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421153</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fuks, Dmitrij B.</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110261984</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cohomology of Infinite-Dimensional Lie Algebras</subfield><subfield code="c">by D. B. Fuks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (352p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Contemporary Soviet Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">There is no question that the cohomology of infinitedimensional Lie algebras deserves a brief and separate monograph. This subject is not covered by any of the traditional branches of mathematics and is characterized by relatively elementary proofs and varied application. Moreover, the subject matter is widely scattered in various research papers or exists only in verbal form. The theory of infinite-dimensional Lie algebras differs markedly from the theory of finite-dimensional Lie algebras in that the latter possesses powerful classification theorems, which usually allow one to "recognize" any finitedimensional Lie algebra (over the field of complex or real numbers), i.e., find it in some list. There are classification theorems in the theory of infinite-dimensional Lie algebras as well, but they are encumbered by strong restrictions of a technical character. These theorems are useful mainly because they yield a considerable supply of interesting examples. We begin with a list of such examples, and further direct our main efforts to their study</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unendlichdimensionale Lie-Algebra</subfield><subfield code="0">(DE-588)4434344-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Unendlichdimensionale Lie-Algebra</subfield><subfield code="0">(DE-588)4434344-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-8765-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856570</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421153 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781468487657 9781468487671 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856570 |
oclc_num | 905422416 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (352p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Springer US |
record_format | marc |
series2 | Contemporary Soviet Mathematics |
spelling | Fuks, Dmitrij B. 1939- Verfasser (DE-588)110261984 aut Cohomology of Infinite-Dimensional Lie Algebras by D. B. Fuks Boston, MA Springer US 1986 1 Online-Ressource (352p) txt rdacontent c rdamedia cr rdacarrier Contemporary Soviet Mathematics There is no question that the cohomology of infinitedimensional Lie algebras deserves a brief and separate monograph. This subject is not covered by any of the traditional branches of mathematics and is characterized by relatively elementary proofs and varied application. Moreover, the subject matter is widely scattered in various research papers or exists only in verbal form. The theory of infinite-dimensional Lie algebras differs markedly from the theory of finite-dimensional Lie algebras in that the latter possesses powerful classification theorems, which usually allow one to "recognize" any finitedimensional Lie algebra (over the field of complex or real numbers), i.e., find it in some list. There are classification theorems in the theory of infinite-dimensional Lie algebras as well, but they are encumbered by strong restrictions of a technical character. These theorems are useful mainly because they yield a considerable supply of interesting examples. We begin with a list of such examples, and further direct our main efforts to their study Mathematics Mathematics, general Mathematik Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Unendlichdimensionale Lie-Algebra (DE-588)4434344-9 gnd rswk-swf Kohomologie (DE-588)4031700-6 gnd rswk-swf Unendlichdimensionale Lie-Algebra (DE-588)4434344-9 s Kohomologie (DE-588)4031700-6 s 1\p DE-604 Lie-Algebra (DE-588)4130355-6 s 2\p DE-604 https://doi.org/10.1007/978-1-4684-8765-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Fuks, Dmitrij B. 1939- Cohomology of Infinite-Dimensional Lie Algebras Mathematics Mathematics, general Mathematik Lie-Algebra (DE-588)4130355-6 gnd Unendlichdimensionale Lie-Algebra (DE-588)4434344-9 gnd Kohomologie (DE-588)4031700-6 gnd |
subject_GND | (DE-588)4130355-6 (DE-588)4434344-9 (DE-588)4031700-6 |
title | Cohomology of Infinite-Dimensional Lie Algebras |
title_auth | Cohomology of Infinite-Dimensional Lie Algebras |
title_exact_search | Cohomology of Infinite-Dimensional Lie Algebras |
title_full | Cohomology of Infinite-Dimensional Lie Algebras by D. B. Fuks |
title_fullStr | Cohomology of Infinite-Dimensional Lie Algebras by D. B. Fuks |
title_full_unstemmed | Cohomology of Infinite-Dimensional Lie Algebras by D. B. Fuks |
title_short | Cohomology of Infinite-Dimensional Lie Algebras |
title_sort | cohomology of infinite dimensional lie algebras |
topic | Mathematics Mathematics, general Mathematik Lie-Algebra (DE-588)4130355-6 gnd Unendlichdimensionale Lie-Algebra (DE-588)4434344-9 gnd Kohomologie (DE-588)4031700-6 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Lie-Algebra Unendlichdimensionale Lie-Algebra Kohomologie |
url | https://doi.org/10.1007/978-1-4684-8765-7 |
work_keys_str_mv | AT fuksdmitrijb cohomologyofinfinitedimensionalliealgebras |