Riemannian Foliations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1988
|
Schriftenreihe: | Progress in Mathematics
73 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Foliation theory has its origins in the global analysis of solutions of ordinary differential equations: on an n-dimensional manifold M, an [autonomous] differential equation is defined by a vector field X ; if this vector field has no singularities, then its trajectories form a partition of M into curves, i.e. a foliation of codimension n - 1. More generally, a foliation F of codimension q on M corresponds to a partition of M into immersed submanifolds [the leaves] of dimension ,--------,- - . - -- p = n - q. The first global image that comes to mind is 1--------;- - - - - - that of a stack of "plaques". 1---------;- - - - - - Viewed laterally [transver 1--------1- - - -- sally], the leaves of such a 1--------1 - - - - -. stacking are the points of a 1--------1--- ----. quotient manifold W of dimension L..... -' _ q. -----~) W M Actually, this image corresponds to an elementary type of foliation, that one says is "simple". For an arbitrary foliation, it is only l- u L ally [on a "simple" open set U] that the foliation appears as a stack of plaques and admits a local quotient manifold. Globally, a leaf L may - - return and cut a simple open set U in several plaques, sometimes even an infinite number of plaques |
Beschreibung: | 1 Online-Ressource (XII, 344 p) |
ISBN: | 9781468486704 9781468486728 |
DOI: | 10.1007/978-1-4684-8670-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421151 | ||
003 | DE-604 | ||
005 | 20170918 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1988 |||| o||u| ||||||eng d | ||
020 | |a 9781468486704 |c Online |9 978-1-4684-8670-4 | ||
020 | |a 9781468486728 |c Print |9 978-1-4684-8672-8 | ||
024 | 7 | |a 10.1007/978-1-4684-8670-4 |2 doi | |
035 | |a (OCoLC)1165602619 | ||
035 | |a (DE-599)BVBBV042421151 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Molino, Pierre |d 1935- |e Verfasser |0 (DE-588)172262119 |4 aut | |
245 | 1 | 0 | |a Riemannian Foliations |c by Pierre Molino |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1988 | |
300 | |a 1 Online-Ressource (XII, 344 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in Mathematics |v 73 | |
500 | |a Foliation theory has its origins in the global analysis of solutions of ordinary differential equations: on an n-dimensional manifold M, an [autonomous] differential equation is defined by a vector field X ; if this vector field has no singularities, then its trajectories form a partition of M into curves, i.e. a foliation of codimension n - 1. More generally, a foliation F of codimension q on M corresponds to a partition of M into immersed submanifolds [the leaves] of dimension ,--------,- - . - -- p = n - q. The first global image that comes to mind is 1--------;- - - - - - that of a stack of "plaques". 1---------;- - - - - - Viewed laterally [transver 1--------1- - - -- sally], the leaves of such a 1--------1 - - - - -. stacking are the points of a 1--------1--- ----. quotient manifold W of dimension L..... -' _ q. -----~) W M Actually, this image corresponds to an elementary type of foliation, that one says is "simple". For an arbitrary foliation, it is only l- u L ally [on a "simple" open set U] that the foliation appears as a stack of plaques and admits a local quotient manifold. Globally, a leaf L may - - return and cut a simple open set U in several plaques, sometimes even an infinite number of plaques | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Riemannsche Blätterung |0 (DE-588)4195597-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannscher Raum |0 (DE-588)4128295-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannsche Blätterung |0 (DE-588)4195597-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Riemannscher Raum |0 (DE-588)4128295-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
830 | 0 | |a Progress in Mathematics |v 73 |w (DE-604)BV000004120 |9 73 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4684-8670-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856568 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093895487488 |
---|---|
any_adam_object | |
author | Molino, Pierre 1935- |
author_GND | (DE-588)172262119 |
author_facet | Molino, Pierre 1935- |
author_role | aut |
author_sort | Molino, Pierre 1935- |
author_variant | p m pm |
building | Verbundindex |
bvnumber | BV042421151 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165602619 (DE-599)BVBBV042421151 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4684-8670-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03101nmm a2200529zcb4500</leader><controlfield tag="001">BV042421151</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170918 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468486704</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4684-8670-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468486728</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4684-8672-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-8670-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165602619</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421151</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Molino, Pierre</subfield><subfield code="d">1935-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172262119</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Riemannian Foliations</subfield><subfield code="c">by Pierre Molino</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 344 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">73</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Foliation theory has its origins in the global analysis of solutions of ordinary differential equations: on an n-dimensional manifold M, an [autonomous] differential equation is defined by a vector field X ; if this vector field has no singularities, then its trajectories form a partition of M into curves, i.e. a foliation of codimension n - 1. More generally, a foliation F of codimension q on M corresponds to a partition of M into immersed submanifolds [the leaves] of dimension ,--------,- - . - -- p = n - q. The first global image that comes to mind is 1--------;- - - - - - that of a stack of "plaques". 1---------;- - - - - - Viewed laterally [transver 1--------1- - - -- sally], the leaves of such a 1--------1 - - - - -. stacking are the points of a 1--------1--- ----. quotient manifold W of dimension L..... -' _ q. -----~) W M Actually, this image corresponds to an elementary type of foliation, that one says is "simple". For an arbitrary foliation, it is only l- u L ally [on a "simple" open set U] that the foliation appears as a stack of plaques and admits a local quotient manifold. Globally, a leaf L may - - return and cut a simple open set U in several plaques, sometimes even an infinite number of plaques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Blätterung</subfield><subfield code="0">(DE-588)4195597-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Blätterung</subfield><subfield code="0">(DE-588)4195597-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Mathematics</subfield><subfield code="v">73</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">73</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-8670-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856568</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421151 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781468486704 9781468486728 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856568 |
oclc_num | 1165602619 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 344 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Birkhäuser Boston |
record_format | marc |
series | Progress in Mathematics |
series2 | Progress in Mathematics |
spelling | Molino, Pierre 1935- Verfasser (DE-588)172262119 aut Riemannian Foliations by Pierre Molino Boston, MA Birkhäuser Boston 1988 1 Online-Ressource (XII, 344 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 73 Foliation theory has its origins in the global analysis of solutions of ordinary differential equations: on an n-dimensional manifold M, an [autonomous] differential equation is defined by a vector field X ; if this vector field has no singularities, then its trajectories form a partition of M into curves, i.e. a foliation of codimension n - 1. More generally, a foliation F of codimension q on M corresponds to a partition of M into immersed submanifolds [the leaves] of dimension ,--------,- - . - -- p = n - q. The first global image that comes to mind is 1--------;- - - - - - that of a stack of "plaques". 1---------;- - - - - - Viewed laterally [transver 1--------1- - - -- sally], the leaves of such a 1--------1 - - - - -. stacking are the points of a 1--------1--- ----. quotient manifold W of dimension L..... -' _ q. -----~) W M Actually, this image corresponds to an elementary type of foliation, that one says is "simple". For an arbitrary foliation, it is only l- u L ally [on a "simple" open set U] that the foliation appears as a stack of plaques and admits a local quotient manifold. Globally, a leaf L may - - return and cut a simple open set U in several plaques, sometimes even an infinite number of plaques Mathematics Geometry Global differential geometry Differential Geometry Mathematik Riemannsche Blätterung (DE-588)4195597-3 gnd rswk-swf Riemannscher Raum (DE-588)4128295-4 gnd rswk-swf Riemannsche Blätterung (DE-588)4195597-3 s 1\p DE-604 Riemannscher Raum (DE-588)4128295-4 s 2\p DE-604 Progress in Mathematics 73 (DE-604)BV000004120 73 https://doi.org/10.1007/978-1-4684-8670-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Molino, Pierre 1935- Riemannian Foliations Progress in Mathematics Mathematics Geometry Global differential geometry Differential Geometry Mathematik Riemannsche Blätterung (DE-588)4195597-3 gnd Riemannscher Raum (DE-588)4128295-4 gnd |
subject_GND | (DE-588)4195597-3 (DE-588)4128295-4 |
title | Riemannian Foliations |
title_auth | Riemannian Foliations |
title_exact_search | Riemannian Foliations |
title_full | Riemannian Foliations by Pierre Molino |
title_fullStr | Riemannian Foliations by Pierre Molino |
title_full_unstemmed | Riemannian Foliations by Pierre Molino |
title_short | Riemannian Foliations |
title_sort | riemannian foliations |
topic | Mathematics Geometry Global differential geometry Differential Geometry Mathematik Riemannsche Blätterung (DE-588)4195597-3 gnd Riemannscher Raum (DE-588)4128295-4 gnd |
topic_facet | Mathematics Geometry Global differential geometry Differential Geometry Mathematik Riemannsche Blätterung Riemannscher Raum |
url | https://doi.org/10.1007/978-1-4684-8670-4 |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT molinopierre riemannianfoliations |