Riemannian Foliations:
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Molino, Pierre 1935- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston, MA Birkhäuser Boston 1988
Schriftenreihe:Progress in Mathematics 73
Schlagworte:
Online-Zugang:Volltext
Beschreibung:Foliation theory has its origins in the global analysis of solutions of ordinary differential equations: on an n-dimensional manifold M, an [autonomous] differential equation is defined by a vector field X ; if this vector field has no singularities, then its trajectories form a partition of M into curves, i.e. a foliation of codimension n - 1. More generally, a foliation F of codimension q on M corresponds to a partition of M into immersed submanifolds [the leaves] of dimension ,--------,- - . - -- p = n - q. The first global image that comes to mind is 1--------;- - - - - - that of a stack of "plaques". 1---------;- - - - - - Viewed laterally [transver­ 1--------1- - - -- sally], the leaves of such a 1--------1 - - - - -. stacking are the points of a 1--------1--- ----. quotient manifold W of dimension ­ L..... -' _ q. -----~) W M Actually, this image corresponds to an elementary type of foliation, that one says is "simple". For an arbitrary foliation, it is only l- u L ally [on a "simple" open set U] that the foliation appears as a stack of plaques and admits a local quotient manifold. Globally, a leaf L may - - return and cut a simple open set U in several plaques, sometimes even an infinite number of plaques
Beschreibung:1 Online-Ressource (XII, 344 p)
ISBN:9781468486704
9781468486728
DOI:10.1007/978-1-4684-8670-4

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen