Numerical Treatment of Inverse Problems in Differential and Integral Equations: Proceedings of an International Workshop, Heidelberg, Fed. Rep. of Germany, August 30 — September 3, 1982
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1983
|
Schriftenreihe: | Progress in Scientific Computing
2 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In many scientific or engineering applications, where ordinary differen tial equation (OOE),partial differential equation (POE), or integral equation (IE) models are involved, numerical simulation is in common use for prediction, monitoring, or control purposes. In many cases, however, successful simulation of a process must be preceded by the solution of the so-called inverse problem, which is usually more complex: given meas ured data and an associated theoretical model, determine unknown para meters in that model (or unknown functions to be parametrized) in such a way that some measure of the "discrepancy" between data and model is minimal. The present volume deals with the numerical treatment of such inverse probelms in fields of application like chemistry (Chap. 2,3,4, 7,9), molecular biology (Chap. 22), physics (Chap. 8,11,20), geophysics (Chap. 10,19), astronomy (Chap. 5), reservoir simulation (Chap. 15,16), elctrocardiology (Chap. 14), computer tomography (Chap. 21), and control system design (Chap. 12,13). In the actual computational solution of inverse problems in these fields, the following typical difficulties arise: (1) The evaluation of the sen sitivity coefficients for the model. may be rather time and storage con suming. Nevertheless these coefficients are needed (a) to ensure (local) uniqueness of the solution, (b) to estimate the accuracy of the obtained approximation of the solution, (c) to speed up the iterative solution of nonlinear problems. (2) Often the inverse problems are ill-posed. To cope with this fact in the presence of noisy or incomplete data or inev itable discretization errors, regularization techniques are necessary |
Beschreibung: | 1 Online-Ressource (XIV, 357 p) |
ISBN: | 9781468473247 9780817631253 |
DOI: | 10.1007/978-1-4684-7324-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421128 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1983 |||| o||u| ||||||eng d | ||
020 | |a 9781468473247 |c Online |9 978-1-4684-7324-7 | ||
020 | |a 9780817631253 |c Print |9 978-0-8176-3125-3 | ||
024 | 7 | |a 10.1007/978-1-4684-7324-7 |2 doi | |
035 | |a (OCoLC)863971161 | ||
035 | |a (DE-599)BVBBV042421128 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Deuflhard, Peter |e Verfasser |4 aut | |
245 | 1 | 0 | |a Numerical Treatment of Inverse Problems in Differential and Integral Equations |b Proceedings of an International Workshop, Heidelberg, Fed. Rep. of Germany, August 30 — September 3, 1982 |c edited by Peter Deuflhard, Ernst Hairer |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1983 | |
300 | |a 1 Online-Ressource (XIV, 357 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Scientific Computing |v 2 | |
500 | |a In many scientific or engineering applications, where ordinary differen tial equation (OOE),partial differential equation (POE), or integral equation (IE) models are involved, numerical simulation is in common use for prediction, monitoring, or control purposes. In many cases, however, successful simulation of a process must be preceded by the solution of the so-called inverse problem, which is usually more complex: given meas ured data and an associated theoretical model, determine unknown para meters in that model (or unknown functions to be parametrized) in such a way that some measure of the "discrepancy" between data and model is minimal. The present volume deals with the numerical treatment of such inverse probelms in fields of application like chemistry (Chap. 2,3,4, 7,9), molecular biology (Chap. 22), physics (Chap. 8,11,20), geophysics (Chap. 10,19), astronomy (Chap. 5), reservoir simulation (Chap. 15,16), elctrocardiology (Chap. 14), computer tomography (Chap. 21), and control system design (Chap. 12,13). In the actual computational solution of inverse problems in these fields, the following typical difficulties arise: (1) The evaluation of the sen sitivity coefficients for the model. may be rather time and storage con suming. Nevertheless these coefficients are needed (a) to ensure (local) uniqueness of the solution, (b) to estimate the accuracy of the obtained approximation of the solution, (c) to speed up the iterative solution of nonlinear problems. (2) Often the inverse problems are ill-posed. To cope with this fact in the presence of noisy or incomplete data or inev itable discretization errors, regularization techniques are necessary | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Integral equations | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Integral Equations | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integralgleichung |0 (DE-588)4027229-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inverses Problem |0 (DE-588)4125161-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1982 |z Heidelberg |2 gnd-content | |
689 | 0 | 0 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Integralgleichung |0 (DE-588)4027229-1 |D s |
689 | 1 | 1 | |a Inverses Problem |0 (DE-588)4125161-1 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 2 | 1 | |a Inverses Problem |0 (DE-588)4125161-1 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
689 | 3 | 0 | |a Inverses Problem |0 (DE-588)4125161-1 |D s |
689 | 3 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 3 | |8 5\p |5 DE-604 | |
689 | 4 | 0 | |a Integralgleichung |0 (DE-588)4027229-1 |D s |
689 | 4 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 4 | |8 6\p |5 DE-604 | |
700 | 1 | |a Hairer, Ernst |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4684-7324-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856545 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093845155840 |
---|---|
any_adam_object | |
author | Deuflhard, Peter |
author_facet | Deuflhard, Peter |
author_role | aut |
author_sort | Deuflhard, Peter |
author_variant | p d pd |
building | Verbundindex |
bvnumber | BV042421128 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863971161 (DE-599)BVBBV042421128 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4684-7324-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04989nmm a2200793zcb4500</leader><controlfield tag="001">BV042421128</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1983 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468473247</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4684-7324-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817631253</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-3125-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-7324-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863971161</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421128</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deuflhard, Peter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Treatment of Inverse Problems in Differential and Integral Equations</subfield><subfield code="b">Proceedings of an International Workshop, Heidelberg, Fed. Rep. of Germany, August 30 — September 3, 1982</subfield><subfield code="c">edited by Peter Deuflhard, Ernst Hairer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 357 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Scientific Computing</subfield><subfield code="v">2</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In many scientific or engineering applications, where ordinary differen tial equation (OOE),partial differential equation (POE), or integral equation (IE) models are involved, numerical simulation is in common use for prediction, monitoring, or control purposes. In many cases, however, successful simulation of a process must be preceded by the solution of the so-called inverse problem, which is usually more complex: given meas ured data and an associated theoretical model, determine unknown para meters in that model (or unknown functions to be parametrized) in such a way that some measure of the "discrepancy" between data and model is minimal. The present volume deals with the numerical treatment of such inverse probelms in fields of application like chemistry (Chap. 2,3,4, 7,9), molecular biology (Chap. 22), physics (Chap. 8,11,20), geophysics (Chap. 10,19), astronomy (Chap. 5), reservoir simulation (Chap. 15,16), elctrocardiology (Chap. 14), computer tomography (Chap. 21), and control system design (Chap. 12,13). In the actual computational solution of inverse problems in these fields, the following typical difficulties arise: (1) The evaluation of the sen sitivity coefficients for the model. may be rather time and storage con suming. Nevertheless these coefficients are needed (a) to ensure (local) uniqueness of the solution, (b) to estimate the accuracy of the obtained approximation of the solution, (c) to speed up the iterative solution of nonlinear problems. (2) Often the inverse problems are ill-posed. To cope with this fact in the presence of noisy or incomplete data or inev itable discretization errors, regularization techniques are necessary</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integralgleichung</subfield><subfield code="0">(DE-588)4027229-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inverses Problem</subfield><subfield code="0">(DE-588)4125161-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1982</subfield><subfield code="z">Heidelberg</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Integralgleichung</subfield><subfield code="0">(DE-588)4027229-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Inverses Problem</subfield><subfield code="0">(DE-588)4125161-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Inverses Problem</subfield><subfield code="0">(DE-588)4125161-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Inverses Problem</subfield><subfield code="0">(DE-588)4125161-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Integralgleichung</subfield><subfield code="0">(DE-588)4027229-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hairer, Ernst</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-7324-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856545</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 1982 Heidelberg gnd-content |
genre_facet | Konferenzschrift 1982 Heidelberg |
id | DE-604.BV042421128 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781468473247 9780817631253 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856545 |
oclc_num | 863971161 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 357 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Scientific Computing |
spelling | Deuflhard, Peter Verfasser aut Numerical Treatment of Inverse Problems in Differential and Integral Equations Proceedings of an International Workshop, Heidelberg, Fed. Rep. of Germany, August 30 — September 3, 1982 edited by Peter Deuflhard, Ernst Hairer Boston, MA Birkhäuser Boston 1983 1 Online-Ressource (XIV, 357 p) txt rdacontent c rdamedia cr rdacarrier Progress in Scientific Computing 2 In many scientific or engineering applications, where ordinary differen tial equation (OOE),partial differential equation (POE), or integral equation (IE) models are involved, numerical simulation is in common use for prediction, monitoring, or control purposes. In many cases, however, successful simulation of a process must be preceded by the solution of the so-called inverse problem, which is usually more complex: given meas ured data and an associated theoretical model, determine unknown para meters in that model (or unknown functions to be parametrized) in such a way that some measure of the "discrepancy" between data and model is minimal. The present volume deals with the numerical treatment of such inverse probelms in fields of application like chemistry (Chap. 2,3,4, 7,9), molecular biology (Chap. 22), physics (Chap. 8,11,20), geophysics (Chap. 10,19), astronomy (Chap. 5), reservoir simulation (Chap. 15,16), elctrocardiology (Chap. 14), computer tomography (Chap. 21), and control system design (Chap. 12,13). In the actual computational solution of inverse problems in these fields, the following typical difficulties arise: (1) The evaluation of the sen sitivity coefficients for the model. may be rather time and storage con suming. Nevertheless these coefficients are needed (a) to ensure (local) uniqueness of the solution, (b) to estimate the accuracy of the obtained approximation of the solution, (c) to speed up the iterative solution of nonlinear problems. (2) Often the inverse problems are ill-posed. To cope with this fact in the presence of noisy or incomplete data or inev itable discretization errors, regularization techniques are necessary Mathematics Integral equations Computer science / Mathematics Numerical analysis Numerical Analysis Integral Equations Computational Mathematics and Numerical Analysis Informatik Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Integralgleichung (DE-588)4027229-1 gnd rswk-swf Inverses Problem (DE-588)4125161-1 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 1982 Heidelberg gnd-content Differentialgleichung (DE-588)4012249-9 s Numerisches Verfahren (DE-588)4128130-5 s 2\p DE-604 Integralgleichung (DE-588)4027229-1 s Inverses Problem (DE-588)4125161-1 s 3\p DE-604 4\p DE-604 5\p DE-604 6\p DE-604 Hairer, Ernst Sonstige oth https://doi.org/10.1007/978-1-4684-7324-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Deuflhard, Peter Numerical Treatment of Inverse Problems in Differential and Integral Equations Proceedings of an International Workshop, Heidelberg, Fed. Rep. of Germany, August 30 — September 3, 1982 Mathematics Integral equations Computer science / Mathematics Numerical analysis Numerical Analysis Integral Equations Computational Mathematics and Numerical Analysis Informatik Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd Integralgleichung (DE-588)4027229-1 gnd Inverses Problem (DE-588)4125161-1 gnd Differentialgleichung (DE-588)4012249-9 gnd |
subject_GND | (DE-588)4128130-5 (DE-588)4027229-1 (DE-588)4125161-1 (DE-588)4012249-9 (DE-588)1071861417 |
title | Numerical Treatment of Inverse Problems in Differential and Integral Equations Proceedings of an International Workshop, Heidelberg, Fed. Rep. of Germany, August 30 — September 3, 1982 |
title_auth | Numerical Treatment of Inverse Problems in Differential and Integral Equations Proceedings of an International Workshop, Heidelberg, Fed. Rep. of Germany, August 30 — September 3, 1982 |
title_exact_search | Numerical Treatment of Inverse Problems in Differential and Integral Equations Proceedings of an International Workshop, Heidelberg, Fed. Rep. of Germany, August 30 — September 3, 1982 |
title_full | Numerical Treatment of Inverse Problems in Differential and Integral Equations Proceedings of an International Workshop, Heidelberg, Fed. Rep. of Germany, August 30 — September 3, 1982 edited by Peter Deuflhard, Ernst Hairer |
title_fullStr | Numerical Treatment of Inverse Problems in Differential and Integral Equations Proceedings of an International Workshop, Heidelberg, Fed. Rep. of Germany, August 30 — September 3, 1982 edited by Peter Deuflhard, Ernst Hairer |
title_full_unstemmed | Numerical Treatment of Inverse Problems in Differential and Integral Equations Proceedings of an International Workshop, Heidelberg, Fed. Rep. of Germany, August 30 — September 3, 1982 edited by Peter Deuflhard, Ernst Hairer |
title_short | Numerical Treatment of Inverse Problems in Differential and Integral Equations |
title_sort | numerical treatment of inverse problems in differential and integral equations proceedings of an international workshop heidelberg fed rep of germany august 30 september 3 1982 |
title_sub | Proceedings of an International Workshop, Heidelberg, Fed. Rep. of Germany, August 30 — September 3, 1982 |
topic | Mathematics Integral equations Computer science / Mathematics Numerical analysis Numerical Analysis Integral Equations Computational Mathematics and Numerical Analysis Informatik Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd Integralgleichung (DE-588)4027229-1 gnd Inverses Problem (DE-588)4125161-1 gnd Differentialgleichung (DE-588)4012249-9 gnd |
topic_facet | Mathematics Integral equations Computer science / Mathematics Numerical analysis Numerical Analysis Integral Equations Computational Mathematics and Numerical Analysis Informatik Mathematik Numerisches Verfahren Integralgleichung Inverses Problem Differentialgleichung Konferenzschrift 1982 Heidelberg |
url | https://doi.org/10.1007/978-1-4684-7324-7 |
work_keys_str_mv | AT deuflhardpeter numericaltreatmentofinverseproblemsindifferentialandintegralequationsproceedingsofaninternationalworkshopheidelbergfedrepofgermanyaugust30september31982 AT hairerernst numericaltreatmentofinverseproblemsindifferentialandintegralequationsproceedingsofaninternationalworkshopheidelbergfedrepofgermanyaugust30september31982 |