Statistical Analysis of Counting Processes:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer US
1982
|
Schriftenreihe: | Lecture Notes in Statistics
12 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A first version of these lecture notes was prepared for a course given in 1980 at the University of Copenhagen to a class of graduate students in mathematical statistics. A thorough revision has led to the result presented here. The main topic of the notes is the theory of multiplicative intens ity models for counting processes, first introduced by Odd Aalen in his Ph.D. thesis from Berkeley 1975, and in a subsequent fundamental paper in the Annals of Statistics 1978. In Copenhagen the interest in statistics on counting processes was sparked by a visit by Odd Aalen in 1976. At present the activities here are centered around Niels Keiding and his group at the Statistical Re search Unit. The Aalen theory is a fine example of how advanced probability theory may be used to develop a povlerful, and for applications very re levant, statistical technique. Aalen's work relies quite heavily on the 'theorie generale des processus' developed primarily by the French school of probability the ory. But the general theory aims at much more general and profound re sults, than what is required to deal with objects of such a relatively simple structure as counting processes on the line. Since also this process theory is virtually inaccessible to non-probabilists, it would appear useful to have an account of what Aalen has done, that includes exactly the amount of probability required to deal satisfactorily and rigorously with statistical models for counting processes |
Beschreibung: | 1 Online-Ressource (VIII, 228 p) |
ISBN: | 9781468462753 9780387907697 |
ISSN: | 0930-0325 |
DOI: | 10.1007/978-1-4684-6275-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421088 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1982 |||| o||u| ||||||eng d | ||
020 | |a 9781468462753 |c Online |9 978-1-4684-6275-3 | ||
020 | |a 9780387907697 |c Print |9 978-0-387-90769-7 | ||
024 | 7 | |a 10.1007/978-1-4684-6275-3 |2 doi | |
035 | |a (OCoLC)863921197 | ||
035 | |a (DE-599)BVBBV042421088 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Jacobsen, Martin |e Verfasser |4 aut | |
245 | 1 | 0 | |a Statistical Analysis of Counting Processes |c by Martin Jacobsen |
264 | 1 | |a New York, NY |b Springer US |c 1982 | |
300 | |a 1 Online-Ressource (VIII, 228 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Statistics |v 12 |x 0930-0325 | |
500 | |a A first version of these lecture notes was prepared for a course given in 1980 at the University of Copenhagen to a class of graduate students in mathematical statistics. A thorough revision has led to the result presented here. The main topic of the notes is the theory of multiplicative intens ity models for counting processes, first introduced by Odd Aalen in his Ph.D. thesis from Berkeley 1975, and in a subsequent fundamental paper in the Annals of Statistics 1978. In Copenhagen the interest in statistics on counting processes was sparked by a visit by Odd Aalen in 1976. At present the activities here are centered around Niels Keiding and his group at the Statistical Re search Unit. The Aalen theory is a fine example of how advanced probability theory may be used to develop a povlerful, and for applications very re levant, statistical technique. Aalen's work relies quite heavily on the 'theorie generale des processus' developed primarily by the French school of probability the ory. But the general theory aims at much more general and profound re sults, than what is required to deal with objects of such a relatively simple structure as counting processes on the line. Since also this process theory is virtually inaccessible to non-probabilists, it would appear useful to have an account of what Aalen has done, that includes exactly the amount of probability required to deal satisfactorily and rigorously with statistical models for counting processes | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Analyse |0 (DE-588)4116599-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zählprozess |0 (DE-588)4631464-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zählprozess |0 (DE-588)4631464-7 |D s |
689 | 0 | 1 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Statistische Analyse |0 (DE-588)4116599-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4684-6275-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856505 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093741346816 |
---|---|
any_adam_object | |
author | Jacobsen, Martin |
author_facet | Jacobsen, Martin |
author_role | aut |
author_sort | Jacobsen, Martin |
author_variant | m j mj |
building | Verbundindex |
bvnumber | BV042421088 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863921197 (DE-599)BVBBV042421088 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4684-6275-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03816nmm a2200613zcb4500</leader><controlfield tag="001">BV042421088</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1982 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468462753</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4684-6275-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387907697</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-90769-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-6275-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863921197</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421088</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jacobsen, Martin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical Analysis of Counting Processes</subfield><subfield code="c">by Martin Jacobsen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer US</subfield><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 228 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Statistics</subfield><subfield code="v">12</subfield><subfield code="x">0930-0325</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A first version of these lecture notes was prepared for a course given in 1980 at the University of Copenhagen to a class of graduate students in mathematical statistics. A thorough revision has led to the result presented here. The main topic of the notes is the theory of multiplicative intens ity models for counting processes, first introduced by Odd Aalen in his Ph.D. thesis from Berkeley 1975, and in a subsequent fundamental paper in the Annals of Statistics 1978. In Copenhagen the interest in statistics on counting processes was sparked by a visit by Odd Aalen in 1976. At present the activities here are centered around Niels Keiding and his group at the Statistical Re search Unit. The Aalen theory is a fine example of how advanced probability theory may be used to develop a povlerful, and for applications very re levant, statistical technique. Aalen's work relies quite heavily on the 'theorie generale des processus' developed primarily by the French school of probability the ory. But the general theory aims at much more general and profound re sults, than what is required to deal with objects of such a relatively simple structure as counting processes on the line. Since also this process theory is virtually inaccessible to non-probabilists, it would appear useful to have an account of what Aalen has done, that includes exactly the amount of probability required to deal satisfactorily and rigorously with statistical models for counting processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Analyse</subfield><subfield code="0">(DE-588)4116599-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zählprozess</subfield><subfield code="0">(DE-588)4631464-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zählprozess</subfield><subfield code="0">(DE-588)4631464-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Statistische Analyse</subfield><subfield code="0">(DE-588)4116599-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-6275-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856505</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421088 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781468462753 9780387907697 |
issn | 0930-0325 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856505 |
oclc_num | 863921197 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 228 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1982 |
publishDateSearch | 1982 |
publishDateSort | 1982 |
publisher | Springer US |
record_format | marc |
series2 | Lecture Notes in Statistics |
spelling | Jacobsen, Martin Verfasser aut Statistical Analysis of Counting Processes by Martin Jacobsen New York, NY Springer US 1982 1 Online-Ressource (VIII, 228 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Statistics 12 0930-0325 A first version of these lecture notes was prepared for a course given in 1980 at the University of Copenhagen to a class of graduate students in mathematical statistics. A thorough revision has led to the result presented here. The main topic of the notes is the theory of multiplicative intens ity models for counting processes, first introduced by Odd Aalen in his Ph.D. thesis from Berkeley 1975, and in a subsequent fundamental paper in the Annals of Statistics 1978. In Copenhagen the interest in statistics on counting processes was sparked by a visit by Odd Aalen in 1976. At present the activities here are centered around Niels Keiding and his group at the Statistical Re search Unit. The Aalen theory is a fine example of how advanced probability theory may be used to develop a povlerful, and for applications very re levant, statistical technique. Aalen's work relies quite heavily on the 'theorie generale des processus' developed primarily by the French school of probability the ory. But the general theory aims at much more general and profound re sults, than what is required to deal with objects of such a relatively simple structure as counting processes on the line. Since also this process theory is virtually inaccessible to non-probabilists, it would appear useful to have an account of what Aalen has done, that includes exactly the amount of probability required to deal satisfactorily and rigorously with statistical models for counting processes Statistics Statistics, general Statistik Statistik (DE-588)4056995-0 gnd rswk-swf Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Statistische Analyse (DE-588)4116599-8 gnd rswk-swf Zählprozess (DE-588)4631464-7 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Zählprozess (DE-588)4631464-7 s Statistik (DE-588)4056995-0 s 1\p DE-604 Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s 2\p DE-604 Statistische Analyse (DE-588)4116599-8 s 3\p DE-604 Stochastischer Prozess (DE-588)4057630-9 s 4\p DE-604 https://doi.org/10.1007/978-1-4684-6275-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Jacobsen, Martin Statistical Analysis of Counting Processes Statistics Statistics, general Statistik Statistik (DE-588)4056995-0 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Statistische Analyse (DE-588)4116599-8 gnd Zählprozess (DE-588)4631464-7 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
subject_GND | (DE-588)4056995-0 (DE-588)4064324-4 (DE-588)4116599-8 (DE-588)4631464-7 (DE-588)4057630-9 |
title | Statistical Analysis of Counting Processes |
title_auth | Statistical Analysis of Counting Processes |
title_exact_search | Statistical Analysis of Counting Processes |
title_full | Statistical Analysis of Counting Processes by Martin Jacobsen |
title_fullStr | Statistical Analysis of Counting Processes by Martin Jacobsen |
title_full_unstemmed | Statistical Analysis of Counting Processes by Martin Jacobsen |
title_short | Statistical Analysis of Counting Processes |
title_sort | statistical analysis of counting processes |
topic | Statistics Statistics, general Statistik Statistik (DE-588)4056995-0 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Statistische Analyse (DE-588)4116599-8 gnd Zählprozess (DE-588)4631464-7 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
topic_facet | Statistics Statistics, general Statistik Wahrscheinlichkeitsrechnung Statistische Analyse Zählprozess Stochastischer Prozess |
url | https://doi.org/10.1007/978-1-4684-6275-3 |
work_keys_str_mv | AT jacobsenmartin statisticalanalysisofcountingprocesses |