Probability Theory: Independence, Interchangeability, Martingales
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer US
1988
|
Ausgabe: | Second Edition |
Schriftenreihe: | Springer Texts in Statistics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Apart from new examples and exercises, some simplifications of proofs, minor improvements, and correction of typographical errors, the principal change from the first edition is the addition of section 9.5, dealing with the central limit theorem for martingales and more general stochastic arrays. vii Preface to the First Edition Probability theory is a branch of mathematics dealing with chance phenomena and has clearly discernible links with the real world. The origins of the subject, generally attributed to investigations by the renowned French mathematician Fermat of problems posed by a gambling contemporary to Pascal, have been pushed back a century earlier to the Italian mathematicians Cardano and Tartaglia about 1570 (Ore, 1953). Results as significant as the Bernoulli weak law of large numbers appeared as early as 1713, although its counterpart, the Borel strong law oflarge numbers, did not emerge until 1909. Central limit theorems and conditional probabilities were already being investigated in the eighteenth century, but the first serious attempts to grapple with the logical foundations of probability seem to be Keynes (1921), von Mises (1928; 1931), and Kolmogorov (1933) |
Beschreibung: | 1 Online-Ressource (XVIII, 467p) |
ISBN: | 9781468405040 9781468405064 |
ISSN: | 1431-875X |
DOI: | 10.1007/978-1-4684-0504-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421048 | ||
003 | DE-604 | ||
005 | 20180123 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1988 |||| o||u| ||||||eng d | ||
020 | |a 9781468405040 |c Online |9 978-1-4684-0504-0 | ||
020 | |a 9781468405064 |c Print |9 978-1-4684-0506-4 | ||
024 | 7 | |a 10.1007/978-1-4684-0504-0 |2 doi | |
035 | |a (OCoLC)1165482332 | ||
035 | |a (DE-599)BVBBV042421048 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Chow, Yuan Shih |d 1924- |e Verfasser |0 (DE-588)1031598707 |4 aut | |
245 | 1 | 0 | |a Probability Theory |b Independence, Interchangeability, Martingales |c by Yuan Shih Chow, Henry Teicher |
250 | |a Second Edition | ||
264 | 1 | |a New York, NY |b Springer US |c 1988 | |
300 | |a 1 Online-Ressource (XVIII, 467p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Texts in Statistics |x 1431-875X | |
500 | |a Apart from new examples and exercises, some simplifications of proofs, minor improvements, and correction of typographical errors, the principal change from the first edition is the addition of section 9.5, dealing with the central limit theorem for martingales and more general stochastic arrays. vii Preface to the First Edition Probability theory is a branch of mathematics dealing with chance phenomena and has clearly discernible links with the real world. The origins of the subject, generally attributed to investigations by the renowned French mathematician Fermat of problems posed by a gambling contemporary to Pascal, have been pushed back a century earlier to the Italian mathematicians Cardano and Tartaglia about 1570 (Ore, 1953). Results as significant as the Bernoulli weak law of large numbers appeared as early as 1713, although its counterpart, the Borel strong law oflarge numbers, did not emerge until 1909. Central limit theorems and conditional probabilities were already being investigated in the eighteenth century, but the first serious attempts to grapple with the logical foundations of probability seem to be Keynes (1921), von Mises (1928; 1931), and Kolmogorov (1933) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Martingal |0 (DE-588)4126466-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Martingal |0 (DE-588)4126466-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Teicher, Henry |d 1922- |e Sonstige |0 (DE-588)1031598804 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4684-0504-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856465 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093649072128 |
---|---|
any_adam_object | |
author | Chow, Yuan Shih 1924- |
author_GND | (DE-588)1031598707 (DE-588)1031598804 |
author_facet | Chow, Yuan Shih 1924- |
author_role | aut |
author_sort | Chow, Yuan Shih 1924- |
author_variant | y s c ys ysc |
building | Verbundindex |
bvnumber | BV042421048 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165482332 (DE-599)BVBBV042421048 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4684-0504-0 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03422nmm a2200577zc 4500</leader><controlfield tag="001">BV042421048</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180123 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468405040</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4684-0504-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468405064</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4684-0506-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-0504-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165482332</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421048</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chow, Yuan Shih</subfield><subfield code="d">1924-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1031598707</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probability Theory</subfield><subfield code="b">Independence, Interchangeability, Martingales</subfield><subfield code="c">by Yuan Shih Chow, Henry Teicher</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer US</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 467p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Texts in Statistics</subfield><subfield code="x">1431-875X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Apart from new examples and exercises, some simplifications of proofs, minor improvements, and correction of typographical errors, the principal change from the first edition is the addition of section 9.5, dealing with the central limit theorem for martingales and more general stochastic arrays. vii Preface to the First Edition Probability theory is a branch of mathematics dealing with chance phenomena and has clearly discernible links with the real world. The origins of the subject, generally attributed to investigations by the renowned French mathematician Fermat of problems posed by a gambling contemporary to Pascal, have been pushed back a century earlier to the Italian mathematicians Cardano and Tartaglia about 1570 (Ore, 1953). Results as significant as the Bernoulli weak law of large numbers appeared as early as 1713, although its counterpart, the Borel strong law oflarge numbers, did not emerge until 1909. Central limit theorems and conditional probabilities were already being investigated in the eighteenth century, but the first serious attempts to grapple with the logical foundations of probability seem to be Keynes (1921), von Mises (1928; 1931), and Kolmogorov (1933)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Martingal</subfield><subfield code="0">(DE-588)4126466-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Martingal</subfield><subfield code="0">(DE-588)4126466-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teicher, Henry</subfield><subfield code="d">1922-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1031598804</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-0504-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856465</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421048 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781468405040 9781468405064 |
issn | 1431-875X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856465 |
oclc_num | 1165482332 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 467p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Springer US |
record_format | marc |
series2 | Springer Texts in Statistics |
spelling | Chow, Yuan Shih 1924- Verfasser (DE-588)1031598707 aut Probability Theory Independence, Interchangeability, Martingales by Yuan Shih Chow, Henry Teicher Second Edition New York, NY Springer US 1988 1 Online-Ressource (XVIII, 467p) txt rdacontent c rdamedia cr rdacarrier Springer Texts in Statistics 1431-875X Apart from new examples and exercises, some simplifications of proofs, minor improvements, and correction of typographical errors, the principal change from the first edition is the addition of section 9.5, dealing with the central limit theorem for martingales and more general stochastic arrays. vii Preface to the First Edition Probability theory is a branch of mathematics dealing with chance phenomena and has clearly discernible links with the real world. The origins of the subject, generally attributed to investigations by the renowned French mathematician Fermat of problems posed by a gambling contemporary to Pascal, have been pushed back a century earlier to the Italian mathematicians Cardano and Tartaglia about 1570 (Ore, 1953). Results as significant as the Bernoulli weak law of large numbers appeared as early as 1713, although its counterpart, the Borel strong law oflarge numbers, did not emerge until 1909. Central limit theorems and conditional probabilities were already being investigated in the eighteenth century, but the first serious attempts to grapple with the logical foundations of probability seem to be Keynes (1921), von Mises (1928; 1931), and Kolmogorov (1933) Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Martingal (DE-588)4126466-6 gnd rswk-swf Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s 1\p DE-604 Martingal (DE-588)4126466-6 s 2\p DE-604 Wahrscheinlichkeitstheorie (DE-588)4079013-7 s 3\p DE-604 Teicher, Henry 1922- Sonstige (DE-588)1031598804 oth https://doi.org/10.1007/978-1-4684-0504-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Chow, Yuan Shih 1924- Probability Theory Independence, Interchangeability, Martingales Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Martingal (DE-588)4126466-6 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
subject_GND | (DE-588)4126466-6 (DE-588)4064324-4 (DE-588)4079013-7 |
title | Probability Theory Independence, Interchangeability, Martingales |
title_auth | Probability Theory Independence, Interchangeability, Martingales |
title_exact_search | Probability Theory Independence, Interchangeability, Martingales |
title_full | Probability Theory Independence, Interchangeability, Martingales by Yuan Shih Chow, Henry Teicher |
title_fullStr | Probability Theory Independence, Interchangeability, Martingales by Yuan Shih Chow, Henry Teicher |
title_full_unstemmed | Probability Theory Independence, Interchangeability, Martingales by Yuan Shih Chow, Henry Teicher |
title_short | Probability Theory |
title_sort | probability theory independence interchangeability martingales |
title_sub | Independence, Interchangeability, Martingales |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Martingal (DE-588)4126466-6 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Martingal Wahrscheinlichkeitsrechnung Wahrscheinlichkeitstheorie |
url | https://doi.org/10.1007/978-1-4684-0504-0 |
work_keys_str_mv | AT chowyuanshih probabilitytheoryindependenceinterchangeabilitymartingales AT teicherhenry probabilitytheoryindependenceinterchangeabilitymartingales |