Brownian Motion and Stochastic Calculus:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York ; Berlin ; Heidelberg ; London ; Paris ; Tokyo
Springer
1988
|
Schriftenreihe: | Graduate Texts in Mathematics
113 |
Schlagworte: | |
Online-Zugang: | UBM01 UPA01 UPA01 Volltext |
Beschreibung: | Two of the most fundamental concepts in the theory of stochastic processes are the Markov property and the martingale property. * This book is written for readers who are acquainted with both of these ideas in the discrete-time setting, and who now wish to explore stochastic processes in their continuoustime context. It has been our goal to write a systematic and thorough exposition of this subject, leading in many instances to the frontiers of knowledge. At the same time, we have endeavored to keep the mathematical prerequisites as low as possible, namely, knowledge of measure-theoretic probability and some familiarity with discrete-time processes. The vehicle we have chosen for this task is Brownian motion, which we present as the canonical example of both a Markov process and a martingale. We support this point of view by showing how, by means of stochastic integration and random time change, all continuous-path martingales and a multitude of continuous-path Markov processes can be represented in terms of Brownian motion. This approach forces us to leave aside those processes which do not have continuous paths. Thus, the Poisson process is not a primary object of study, although it is developed in Chapter 1 to be used as a tool when we later study passage times and local time of Brownian motion |
Beschreibung: | 1 Online-Ressource (xxiii, 470 Seiten) |
ISBN: | 9781468403022 |
ISSN: | 0072-5285 |
DOI: | 10.1007/978-1-4684-0302-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421031 | ||
003 | DE-604 | ||
005 | 20210215 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1988 |||| o||u| ||||||eng d | ||
020 | |a 9781468403022 |c Online |9 978-1-4684-0302-2 | ||
024 | 7 | |a 10.1007/978-1-4684-0302-2 |2 doi | |
035 | |a (OCoLC)863960418 | ||
035 | |a (DE-599)BVBBV042421031 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-739 |a DE-19 |a DE-634 | ||
050 | 0 | |a QA274.75 | |
082 | 0 | |a 531/.163 |2 19 | |
082 | 0 | |a 519.2 |2 23 | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a QH 237 |0 (DE-625)141552: |2 rvk | ||
084 | |a MAT 606f |2 stub | ||
084 | |a MAT 607f |2 stub | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Karatzas, Ioannis |d 1952- |e Verfasser |0 (DE-588)140840346 |4 aut | |
245 | 1 | 0 | |a Brownian Motion and Stochastic Calculus |c Ioannis Karatzas, Steven E. Shreve |
264 | 1 | |a New York ; Berlin ; Heidelberg ; London ; Paris ; Tokyo |b Springer |c 1988 | |
300 | |a 1 Online-Ressource (xxiii, 470 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Graduate Texts in Mathematics |v 113 |x 0072-5285 | |
500 | |a Two of the most fundamental concepts in the theory of stochastic processes are the Markov property and the martingale property. * This book is written for readers who are acquainted with both of these ideas in the discrete-time setting, and who now wish to explore stochastic processes in their continuoustime context. It has been our goal to write a systematic and thorough exposition of this subject, leading in many instances to the frontiers of knowledge. At the same time, we have endeavored to keep the mathematical prerequisites as low as possible, namely, knowledge of measure-theoretic probability and some familiarity with discrete-time processes. The vehicle we have chosen for this task is Brownian motion, which we present as the canonical example of both a Markov process and a martingale. We support this point of view by showing how, by means of stochastic integration and random time change, all continuous-path martingales and a multitude of continuous-path Markov processes can be represented in terms of Brownian motion. This approach forces us to leave aside those processes which do not have continuous paths. Thus, the Poisson process is not a primary object of study, although it is developed in Chapter 1 to be used as a tool when we later study passage times and local time of Brownian motion | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Analyse stochastique | |
650 | 4 | |a Mouvement brownien, Processus de | |
650 | 7 | |a Processus stochastiques |2 ram | |
650 | 4 | |a Brownian motion processes | |
650 | 4 | |a Stochastic analysis | |
650 | 0 | 7 | |a Stochastische Analysis |0 (DE-588)4132272-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Brownsche Bewegung |0 (DE-588)4128328-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastik |0 (DE-588)4121729-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stetigkeit |0 (DE-588)4183167-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Brownsche Bewegung |0 (DE-588)4128328-4 |D s |
689 | 0 | 1 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Brownsche Bewegung |0 (DE-588)4128328-4 |D s |
689 | 1 | 1 | |a Stochastische Analysis |0 (DE-588)4132272-1 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Brownsche Bewegung |0 (DE-588)4128328-4 |D s |
689 | 2 | 1 | |a Stetigkeit |0 (DE-588)4183167-6 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Brownsche Bewegung |0 (DE-588)4128328-4 |D s |
689 | 3 | 1 | |a Stochastik |0 (DE-588)4121729-9 |D s |
689 | 3 | |5 DE-604 | |
700 | 1 | |a Shreve, Steven E. |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4684-0304-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 3-540-96535-1 |
830 | 0 | |a Graduate Texts in Mathematics |v 113 |w (DE-604)BV035421258 |9 113 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4684-0302-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE |a ZDB-30-PQE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856448 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/ub-lmu/detail.action?docID=3082872 |l UBM01 |p ZDB-30-PQE |q UBM_Einzelkauf20 |x Aggregator |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4684-0302-2 |l UPA01 |p ZDB-2-BAE |q Einzelkauf_Springer |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/uni-passau/detail.action?docID=3082872 |l UPA01 |p ZDB-30-PQE |q Einzelkauf_Springer |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804153093632294912 |
---|---|
any_adam_object | |
author | Karatzas, Ioannis 1952- Shreve, Steven E. |
author_GND | (DE-588)140840346 |
author_facet | Karatzas, Ioannis 1952- Shreve, Steven E. |
author_role | aut aut |
author_sort | Karatzas, Ioannis 1952- |
author_variant | i k ik s e s se ses |
building | Verbundindex |
bvnumber | BV042421031 |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274.75 |
callnumber-search | QA274.75 |
callnumber-sort | QA 3274.75 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 820 QH 237 |
classification_tum | MAT 606f MAT 607f MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE ZDB-30-PQE |
ctrlnum | (OCoLC)863960418 (DE-599)BVBBV042421031 |
dewey-full | 531/.163 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics 519 - Probabilities and applied mathematics |
dewey-raw | 531/.163 519.2 |
dewey-search | 531/.163 519.2 |
dewey-sort | 3531 3163 |
dewey-tens | 530 - Physics 510 - Mathematics |
discipline | Physik Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-1-4684-0302-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04674nmm a2200817zcb4500</leader><controlfield tag="001">BV042421031</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468403022</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4684-0302-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-0302-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863960418</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421031</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274.75</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531/.163</subfield><subfield code="2">19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 237</subfield><subfield code="0">(DE-625)141552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 606f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 607f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Karatzas, Ioannis</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140840346</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Brownian Motion and Stochastic Calculus</subfield><subfield code="c">Ioannis Karatzas, Steven E. Shreve</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York ; Berlin ; Heidelberg ; London ; Paris ; Tokyo</subfield><subfield code="b">Springer</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiii, 470 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">113</subfield><subfield code="x">0072-5285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Two of the most fundamental concepts in the theory of stochastic processes are the Markov property and the martingale property. * This book is written for readers who are acquainted with both of these ideas in the discrete-time setting, and who now wish to explore stochastic processes in their continuoustime context. It has been our goal to write a systematic and thorough exposition of this subject, leading in many instances to the frontiers of knowledge. At the same time, we have endeavored to keep the mathematical prerequisites as low as possible, namely, knowledge of measure-theoretic probability and some familiarity with discrete-time processes. The vehicle we have chosen for this task is Brownian motion, which we present as the canonical example of both a Markov process and a martingale. We support this point of view by showing how, by means of stochastic integration and random time change, all continuous-path martingales and a multitude of continuous-path Markov processes can be represented in terms of Brownian motion. This approach forces us to leave aside those processes which do not have continuous paths. Thus, the Poisson process is not a primary object of study, although it is developed in Chapter 1 to be used as a tool when we later study passage times and local time of Brownian motion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse stochastique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mouvement brownien, Processus de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Processus stochastiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brownian motion processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Brownsche Bewegung</subfield><subfield code="0">(DE-588)4128328-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastik</subfield><subfield code="0">(DE-588)4121729-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stetigkeit</subfield><subfield code="0">(DE-588)4183167-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Brownsche Bewegung</subfield><subfield code="0">(DE-588)4128328-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Brownsche Bewegung</subfield><subfield code="0">(DE-588)4128328-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Brownsche Bewegung</subfield><subfield code="0">(DE-588)4128328-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Stetigkeit</subfield><subfield code="0">(DE-588)4183167-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Brownsche Bewegung</subfield><subfield code="0">(DE-588)4128328-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Stochastik</subfield><subfield code="0">(DE-588)4121729-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shreve, Steven E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4684-0304-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">3-540-96535-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">113</subfield><subfield code="w">(DE-604)BV035421258</subfield><subfield code="9">113</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-0302-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856448</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/ub-lmu/detail.action?docID=3082872</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBM_Einzelkauf20</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4684-0302-2</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-BAE</subfield><subfield code="q">Einzelkauf_Springer</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/uni-passau/detail.action?docID=3082872</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">Einzelkauf_Springer</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042421031 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781468403022 |
issn | 0072-5285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856448 |
oclc_num | 863960418 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-739 DE-19 DE-BY-UBM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-739 DE-19 DE-BY-UBM DE-634 |
physical | 1 Online-Ressource (xxiii, 470 Seiten) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-30-PQE ZDB-2-SMA_Archive ZDB-30-PQE UBM_Einzelkauf20 ZDB-2-BAE Einzelkauf_Springer ZDB-30-PQE Einzelkauf_Springer |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Springer |
record_format | marc |
series | Graduate Texts in Mathematics |
series2 | Graduate Texts in Mathematics |
spelling | Karatzas, Ioannis 1952- Verfasser (DE-588)140840346 aut Brownian Motion and Stochastic Calculus Ioannis Karatzas, Steven E. Shreve New York ; Berlin ; Heidelberg ; London ; Paris ; Tokyo Springer 1988 1 Online-Ressource (xxiii, 470 Seiten) txt rdacontent c rdamedia cr rdacarrier Graduate Texts in Mathematics 113 0072-5285 Two of the most fundamental concepts in the theory of stochastic processes are the Markov property and the martingale property. * This book is written for readers who are acquainted with both of these ideas in the discrete-time setting, and who now wish to explore stochastic processes in their continuoustime context. It has been our goal to write a systematic and thorough exposition of this subject, leading in many instances to the frontiers of knowledge. At the same time, we have endeavored to keep the mathematical prerequisites as low as possible, namely, knowledge of measure-theoretic probability and some familiarity with discrete-time processes. The vehicle we have chosen for this task is Brownian motion, which we present as the canonical example of both a Markov process and a martingale. We support this point of view by showing how, by means of stochastic integration and random time change, all continuous-path martingales and a multitude of continuous-path Markov processes can be represented in terms of Brownian motion. This approach forces us to leave aside those processes which do not have continuous paths. Thus, the Poisson process is not a primary object of study, although it is developed in Chapter 1 to be used as a tool when we later study passage times and local time of Brownian motion Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Analyse stochastique Mouvement brownien, Processus de Processus stochastiques ram Brownian motion processes Stochastic analysis Stochastische Analysis (DE-588)4132272-1 gnd rswk-swf Brownsche Bewegung (DE-588)4128328-4 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Stochastik (DE-588)4121729-9 gnd rswk-swf Stetigkeit (DE-588)4183167-6 gnd rswk-swf Brownsche Bewegung (DE-588)4128328-4 s Stochastischer Prozess (DE-588)4057630-9 s DE-604 Stochastische Analysis (DE-588)4132272-1 s Stetigkeit (DE-588)4183167-6 s Stochastik (DE-588)4121729-9 s Shreve, Steven E. Verfasser aut Erscheint auch als Druck-Ausgabe 978-1-4684-0304-6 Erscheint auch als Druck-Ausgabe 3-540-96535-1 Graduate Texts in Mathematics 113 (DE-604)BV035421258 113 https://doi.org/10.1007/978-1-4684-0302-2 Verlag Volltext |
spellingShingle | Karatzas, Ioannis 1952- Shreve, Steven E. Brownian Motion and Stochastic Calculus Graduate Texts in Mathematics Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Analyse stochastique Mouvement brownien, Processus de Processus stochastiques ram Brownian motion processes Stochastic analysis Stochastische Analysis (DE-588)4132272-1 gnd Brownsche Bewegung (DE-588)4128328-4 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Stochastik (DE-588)4121729-9 gnd Stetigkeit (DE-588)4183167-6 gnd |
subject_GND | (DE-588)4132272-1 (DE-588)4128328-4 (DE-588)4057630-9 (DE-588)4121729-9 (DE-588)4183167-6 |
title | Brownian Motion and Stochastic Calculus |
title_auth | Brownian Motion and Stochastic Calculus |
title_exact_search | Brownian Motion and Stochastic Calculus |
title_full | Brownian Motion and Stochastic Calculus Ioannis Karatzas, Steven E. Shreve |
title_fullStr | Brownian Motion and Stochastic Calculus Ioannis Karatzas, Steven E. Shreve |
title_full_unstemmed | Brownian Motion and Stochastic Calculus Ioannis Karatzas, Steven E. Shreve |
title_short | Brownian Motion and Stochastic Calculus |
title_sort | brownian motion and stochastic calculus |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Analyse stochastique Mouvement brownien, Processus de Processus stochastiques ram Brownian motion processes Stochastic analysis Stochastische Analysis (DE-588)4132272-1 gnd Brownsche Bewegung (DE-588)4128328-4 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Stochastik (DE-588)4121729-9 gnd Stetigkeit (DE-588)4183167-6 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Analyse stochastique Mouvement brownien, Processus de Processus stochastiques Brownian motion processes Stochastic analysis Stochastische Analysis Brownsche Bewegung Stochastischer Prozess Stochastik Stetigkeit |
url | https://doi.org/10.1007/978-1-4684-0302-2 |
volume_link | (DE-604)BV035421258 |
work_keys_str_mv | AT karatzasioannis brownianmotionandstochasticcalculus AT shrevestevene brownianmotionandstochasticcalculus |