Linear Algebra:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer US
1978
|
Schriftenreihe: | Undergraduate Texts in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This text is written for a course in linear algebra at the (U.S.) sophomore undergraduate level, preferably directly following a one-variable calculus course, so that linear algebra can be used in a course on multidimensional calculus. Realizing that students at this level have had little contact with complex numbers or abstract mathematics the book deals almost exclusively with real finite-dimensional vector spaces in a setting and formulation that permits easy generalization to abstract vector spaces. The parallel complex theory is developed in the exercises. The book has as a goal the principal axis theorem for real symmetric transformations, and a more or less direct path is followed. As a consequence there are many subjects that are not developed, and this is intentional. However a wide selection of examples of vector spaces and linear trans formations is developed, in the hope that they will serve as a testing ground for the theory. The book is meant as an introduction to linear algebra and the theory developed contains the essentials for this goal. Students with a need to learn more linear algebra can do so in a course in abstract algebra, which is the appropriate setting. Through this book they will be taken on an excursion to the algebraic/analytic zoo, and introduced to some of the animals for the first time. Further excursions can teach them more about the curious habits of some of these remarkable creatures |
Beschreibung: | 1 Online-Ressource (VII, 280 p) |
ISBN: | 9781461599951 9781461599975 |
ISSN: | 0172-6056 |
DOI: | 10.1007/978-1-4615-9995-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042420987 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1978 |||| o||u| ||||||eng d | ||
020 | |a 9781461599951 |c Online |9 978-1-4615-9995-1 | ||
020 | |a 9781461599975 |c Print |9 978-1-4615-9997-5 | ||
024 | 7 | |a 10.1007/978-1-4615-9995-1 |2 doi | |
035 | |a (OCoLC)863871957 | ||
035 | |a (DE-599)BVBBV042420987 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Smith, Larry |e Verfasser |4 aut | |
245 | 1 | 0 | |a Linear Algebra |c by Larry Smith |
264 | 1 | |a New York, NY |b Springer US |c 1978 | |
300 | |a 1 Online-Ressource (VII, 280 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Undergraduate Texts in Mathematics |x 0172-6056 | |
500 | |a This text is written for a course in linear algebra at the (U.S.) sophomore undergraduate level, preferably directly following a one-variable calculus course, so that linear algebra can be used in a course on multidimensional calculus. Realizing that students at this level have had little contact with complex numbers or abstract mathematics the book deals almost exclusively with real finite-dimensional vector spaces in a setting and formulation that permits easy generalization to abstract vector spaces. The parallel complex theory is developed in the exercises. The book has as a goal the principal axis theorem for real symmetric transformations, and a more or less direct path is followed. As a consequence there are many subjects that are not developed, and this is intentional. However a wide selection of examples of vector spaces and linear trans formations is developed, in the hope that they will serve as a testing ground for the theory. The book is meant as an introduction to linear algebra and the theory developed contains the essentials for this goal. Students with a need to learn more linear algebra can do so in a course in abstract algebra, which is the appropriate setting. Through this book they will be taken on an excursion to the algebraic/analytic zoo, and introduced to some of the animals for the first time. Further excursions can teach them more about the curious habits of some of these remarkable creatures | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a ALGOL |0 (DE-588)4001182-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenwertproblem |0 (DE-588)4013802-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrizengleichung |0 (DE-588)4169125-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
655 | 7 | |8 3\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 0 | 1 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 0 | 2 | |a ALGOL |0 (DE-588)4001182-3 |D s |
689 | 0 | |8 4\p |5 DE-604 | |
689 | 1 | 0 | |a Matrizengleichung |0 (DE-588)4169125-8 |D s |
689 | 1 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 1 | |8 5\p |5 DE-604 | |
689 | 2 | 0 | |a Eigenwertproblem |0 (DE-588)4013802-1 |D s |
689 | 2 | 1 | |a ALGOL |0 (DE-588)4001182-3 |D s |
689 | 2 | |8 6\p |5 DE-604 | |
689 | 3 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 3 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 3 | |8 7\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-9995-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856404 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 7\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093551554560 |
---|---|
any_adam_object | |
author | Smith, Larry |
author_facet | Smith, Larry |
author_role | aut |
author_sort | Smith, Larry |
author_variant | l s ls |
building | Verbundindex |
bvnumber | BV042420987 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863871957 (DE-599)BVBBV042420987 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4615-9995-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04456nmm a2200745zc 4500</leader><controlfield tag="001">BV042420987</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1978 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461599951</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4615-9995-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461599975</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4615-9997-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-9995-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863871957</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420987</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smith, Larry</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear Algebra</subfield><subfield code="c">by Larry Smith</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer US</subfield><subfield code="c">1978</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 280 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate Texts in Mathematics</subfield><subfield code="x">0172-6056</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This text is written for a course in linear algebra at the (U.S.) sophomore undergraduate level, preferably directly following a one-variable calculus course, so that linear algebra can be used in a course on multidimensional calculus. Realizing that students at this level have had little contact with complex numbers or abstract mathematics the book deals almost exclusively with real finite-dimensional vector spaces in a setting and formulation that permits easy generalization to abstract vector spaces. The parallel complex theory is developed in the exercises. The book has as a goal the principal axis theorem for real symmetric transformations, and a more or less direct path is followed. As a consequence there are many subjects that are not developed, and this is intentional. However a wide selection of examples of vector spaces and linear trans formations is developed, in the hope that they will serve as a testing ground for the theory. The book is meant as an introduction to linear algebra and the theory developed contains the essentials for this goal. Students with a need to learn more linear algebra can do so in a course in abstract algebra, which is the appropriate setting. Through this book they will be taken on an excursion to the algebraic/analytic zoo, and introduced to some of the animals for the first time. Further excursions can teach them more about the curious habits of some of these remarkable creatures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">ALGOL</subfield><subfield code="0">(DE-588)4001182-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenwertproblem</subfield><subfield code="0">(DE-588)4013802-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizengleichung</subfield><subfield code="0">(DE-588)4169125-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">3\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">ALGOL</subfield><subfield code="0">(DE-588)4001182-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Matrizengleichung</subfield><subfield code="0">(DE-588)4169125-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Eigenwertproblem</subfield><subfield code="0">(DE-588)4013802-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">ALGOL</subfield><subfield code="0">(DE-588)4001182-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-9995-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856404</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4143413-4 Aufsatzsammlung gnd-content 3\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Einführung Aufsatzsammlung Lehrbuch |
id | DE-604.BV042420987 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781461599951 9781461599975 |
issn | 0172-6056 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856404 |
oclc_num | 863871957 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 280 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1978 |
publishDateSearch | 1978 |
publishDateSort | 1978 |
publisher | Springer US |
record_format | marc |
series2 | Undergraduate Texts in Mathematics |
spelling | Smith, Larry Verfasser aut Linear Algebra by Larry Smith New York, NY Springer US 1978 1 Online-Ressource (VII, 280 p) txt rdacontent c rdamedia cr rdacarrier Undergraduate Texts in Mathematics 0172-6056 This text is written for a course in linear algebra at the (U.S.) sophomore undergraduate level, preferably directly following a one-variable calculus course, so that linear algebra can be used in a course on multidimensional calculus. Realizing that students at this level have had little contact with complex numbers or abstract mathematics the book deals almost exclusively with real finite-dimensional vector spaces in a setting and formulation that permits easy generalization to abstract vector spaces. The parallel complex theory is developed in the exercises. The book has as a goal the principal axis theorem for real symmetric transformations, and a more or less direct path is followed. As a consequence there are many subjects that are not developed, and this is intentional. However a wide selection of examples of vector spaces and linear trans formations is developed, in the hope that they will serve as a testing ground for the theory. The book is meant as an introduction to linear algebra and the theory developed contains the essentials for this goal. Students with a need to learn more linear algebra can do so in a course in abstract algebra, which is the appropriate setting. Through this book they will be taken on an excursion to the algebraic/analytic zoo, and introduced to some of the animals for the first time. Further excursions can teach them more about the curious habits of some of these remarkable creatures Mathematics Mathematics, general Mathematik Lineare Algebra (DE-588)4035811-2 gnd rswk-swf ALGOL (DE-588)4001182-3 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Eigenwertproblem (DE-588)4013802-1 gnd rswk-swf Matrizengleichung (DE-588)4169125-8 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4143413-4 Aufsatzsammlung gnd-content 3\p (DE-588)4123623-3 Lehrbuch gnd-content Numerische Mathematik (DE-588)4042805-9 s Lineare Algebra (DE-588)4035811-2 s ALGOL (DE-588)4001182-3 s 4\p DE-604 Matrizengleichung (DE-588)4169125-8 s Numerisches Verfahren (DE-588)4128130-5 s 5\p DE-604 Eigenwertproblem (DE-588)4013802-1 s 6\p DE-604 7\p DE-604 https://doi.org/10.1007/978-1-4615-9995-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 7\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Smith, Larry Linear Algebra Mathematics Mathematics, general Mathematik Lineare Algebra (DE-588)4035811-2 gnd ALGOL (DE-588)4001182-3 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Eigenwertproblem (DE-588)4013802-1 gnd Matrizengleichung (DE-588)4169125-8 gnd Numerische Mathematik (DE-588)4042805-9 gnd |
subject_GND | (DE-588)4035811-2 (DE-588)4001182-3 (DE-588)4128130-5 (DE-588)4013802-1 (DE-588)4169125-8 (DE-588)4042805-9 (DE-588)4151278-9 (DE-588)4143413-4 (DE-588)4123623-3 |
title | Linear Algebra |
title_auth | Linear Algebra |
title_exact_search | Linear Algebra |
title_full | Linear Algebra by Larry Smith |
title_fullStr | Linear Algebra by Larry Smith |
title_full_unstemmed | Linear Algebra by Larry Smith |
title_short | Linear Algebra |
title_sort | linear algebra |
topic | Mathematics Mathematics, general Mathematik Lineare Algebra (DE-588)4035811-2 gnd ALGOL (DE-588)4001182-3 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Eigenwertproblem (DE-588)4013802-1 gnd Matrizengleichung (DE-588)4169125-8 gnd Numerische Mathematik (DE-588)4042805-9 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Lineare Algebra ALGOL Numerisches Verfahren Eigenwertproblem Matrizengleichung Numerische Mathematik Einführung Aufsatzsammlung Lehrbuch |
url | https://doi.org/10.1007/978-1-4615-9995-1 |
work_keys_str_mv | AT smithlarry linearalgebra |