Brownian Motion and Diffusion:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1983
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A long time ago I started writing a book about Markov chains, Brownian motion, and diffusion. I soon had two hundred pages of manuscript and my publisher was enthusiastic. Some years and several drafts later, I had a thot:sand pages of manuscript, and my publisher was less enthusiastic. So we made it a trilogy: Markov Chains Brownian Motion and Diffusion Approximating Countable Markov Chains familiarly - Me, B & D, and ACM. I wrote the first two books for beginning graduate students with some knowledge of probability; if you can follow Sections 3.4 to 3.9 of Brownian Motion and Diffusion you're in. The first two books are quite independent of one another, and completely independent of the third. This last book is a monograph, which explains one way to think about chains with instantaneous states. The results in it are supposed to be new, except where there are spe cific disclaimers; it's written in the framework of Markov Chains. Most of the proofs in the trilogy are new, and I tried hard to make them explicit. The old ones were often elegant, but I seldom saw what made them go. With my own, I can sometimes show you why things work. And, as I will argue in a minute, my demonstrations are easier technically. If I wrote them down well enough, you may come to agree |
Beschreibung: | 1 Online-Ressource (231p) |
ISBN: | 9781461565741 9781461565765 |
DOI: | 10.1007/978-1-4615-6574-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042420927 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1983 |||| o||u| ||||||eng d | ||
020 | |a 9781461565741 |c Online |9 978-1-4615-6574-1 | ||
020 | |a 9781461565765 |c Print |9 978-1-4615-6576-5 | ||
024 | 7 | |a 10.1007/978-1-4615-6574-1 |2 doi | |
035 | |a (OCoLC)864012683 | ||
035 | |a (DE-599)BVBBV042420927 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Freedman, David |e Verfasser |4 aut | |
245 | 1 | 0 | |a Brownian Motion and Diffusion |c by David Freedman |
264 | 1 | |a New York, NY |b Springer New York |c 1983 | |
300 | |a 1 Online-Ressource (231p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a A long time ago I started writing a book about Markov chains, Brownian motion, and diffusion. I soon had two hundred pages of manuscript and my publisher was enthusiastic. Some years and several drafts later, I had a thot:sand pages of manuscript, and my publisher was less enthusiastic. So we made it a trilogy: Markov Chains Brownian Motion and Diffusion Approximating Countable Markov Chains familiarly - Me, B & D, and ACM. I wrote the first two books for beginning graduate students with some knowledge of probability; if you can follow Sections 3.4 to 3.9 of Brownian Motion and Diffusion you're in. The first two books are quite independent of one another, and completely independent of the third. This last book is a monograph, which explains one way to think about chains with instantaneous states. The results in it are supposed to be new, except where there are spe cific disclaimers; it's written in the framework of Markov Chains. Most of the proofs in the trilogy are new, and I tried hard to make them explicit. The old ones were often elegant, but I seldom saw what made them go. With my own, I can sometimes show you why things work. And, as I will argue in a minute, my demonstrations are easier technically. If I wrote them down well enough, you may come to agree | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Diffusion |0 (DE-588)4012277-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Brownsche Bewegung |0 (DE-588)4128328-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diffusionsprozess |0 (DE-588)4274463-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Brownsche Bewegung |0 (DE-588)4128328-4 |D s |
689 | 0 | 1 | |a Diffusion |0 (DE-588)4012277-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Diffusionsprozess |0 (DE-588)4274463-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-6574-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856344 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093421531136 |
---|---|
any_adam_object | |
author | Freedman, David |
author_facet | Freedman, David |
author_role | aut |
author_sort | Freedman, David |
author_variant | d f df |
building | Verbundindex |
bvnumber | BV042420927 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864012683 (DE-599)BVBBV042420927 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4615-6574-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03118nmm a2200517zc 4500</leader><controlfield tag="001">BV042420927</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1983 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461565741</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4615-6574-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461565765</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4615-6576-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-6574-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864012683</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420927</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Freedman, David</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Brownian Motion and Diffusion</subfield><subfield code="c">by David Freedman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (231p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A long time ago I started writing a book about Markov chains, Brownian motion, and diffusion. I soon had two hundred pages of manuscript and my publisher was enthusiastic. Some years and several drafts later, I had a thot:sand pages of manuscript, and my publisher was less enthusiastic. So we made it a trilogy: Markov Chains Brownian Motion and Diffusion Approximating Countable Markov Chains familiarly - Me, B & D, and ACM. I wrote the first two books for beginning graduate students with some knowledge of probability; if you can follow Sections 3.4 to 3.9 of Brownian Motion and Diffusion you're in. The first two books are quite independent of one another, and completely independent of the third. This last book is a monograph, which explains one way to think about chains with instantaneous states. The results in it are supposed to be new, except where there are spe cific disclaimers; it's written in the framework of Markov Chains. Most of the proofs in the trilogy are new, and I tried hard to make them explicit. The old ones were often elegant, but I seldom saw what made them go. With my own, I can sometimes show you why things work. And, as I will argue in a minute, my demonstrations are easier technically. If I wrote them down well enough, you may come to agree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diffusion</subfield><subfield code="0">(DE-588)4012277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Brownsche Bewegung</subfield><subfield code="0">(DE-588)4128328-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diffusionsprozess</subfield><subfield code="0">(DE-588)4274463-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Brownsche Bewegung</subfield><subfield code="0">(DE-588)4128328-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Diffusion</subfield><subfield code="0">(DE-588)4012277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Diffusionsprozess</subfield><subfield code="0">(DE-588)4274463-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-6574-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856344</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420927 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781461565741 9781461565765 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856344 |
oclc_num | 864012683 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (231p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Springer New York |
record_format | marc |
spelling | Freedman, David Verfasser aut Brownian Motion and Diffusion by David Freedman New York, NY Springer New York 1983 1 Online-Ressource (231p) txt rdacontent c rdamedia cr rdacarrier A long time ago I started writing a book about Markov chains, Brownian motion, and diffusion. I soon had two hundred pages of manuscript and my publisher was enthusiastic. Some years and several drafts later, I had a thot:sand pages of manuscript, and my publisher was less enthusiastic. So we made it a trilogy: Markov Chains Brownian Motion and Diffusion Approximating Countable Markov Chains familiarly - Me, B & D, and ACM. I wrote the first two books for beginning graduate students with some knowledge of probability; if you can follow Sections 3.4 to 3.9 of Brownian Motion and Diffusion you're in. The first two books are quite independent of one another, and completely independent of the third. This last book is a monograph, which explains one way to think about chains with instantaneous states. The results in it are supposed to be new, except where there are spe cific disclaimers; it's written in the framework of Markov Chains. Most of the proofs in the trilogy are new, and I tried hard to make them explicit. The old ones were often elegant, but I seldom saw what made them go. With my own, I can sometimes show you why things work. And, as I will argue in a minute, my demonstrations are easier technically. If I wrote them down well enough, you may come to agree Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Diffusion (DE-588)4012277-3 gnd rswk-swf Brownsche Bewegung (DE-588)4128328-4 gnd rswk-swf Diffusionsprozess (DE-588)4274463-5 gnd rswk-swf Brownsche Bewegung (DE-588)4128328-4 s Diffusion (DE-588)4012277-3 s 1\p DE-604 Diffusionsprozess (DE-588)4274463-5 s 2\p DE-604 https://doi.org/10.1007/978-1-4615-6574-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Freedman, David Brownian Motion and Diffusion Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Diffusion (DE-588)4012277-3 gnd Brownsche Bewegung (DE-588)4128328-4 gnd Diffusionsprozess (DE-588)4274463-5 gnd |
subject_GND | (DE-588)4012277-3 (DE-588)4128328-4 (DE-588)4274463-5 |
title | Brownian Motion and Diffusion |
title_auth | Brownian Motion and Diffusion |
title_exact_search | Brownian Motion and Diffusion |
title_full | Brownian Motion and Diffusion by David Freedman |
title_fullStr | Brownian Motion and Diffusion by David Freedman |
title_full_unstemmed | Brownian Motion and Diffusion by David Freedman |
title_short | Brownian Motion and Diffusion |
title_sort | brownian motion and diffusion |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Diffusion (DE-588)4012277-3 gnd Brownsche Bewegung (DE-588)4128328-4 gnd Diffusionsprozess (DE-588)4274463-5 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Diffusion Brownsche Bewegung Diffusionsprozess |
url | https://doi.org/10.1007/978-1-4615-6574-1 |
work_keys_str_mv | AT freedmandavid brownianmotionanddiffusion |