Locating Lines and Hyperplanes: Theory and Algorithms
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1999
|
Schriftenreihe: | Applied Optimization
25 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Line and hyperplane location problems play an important role not only in operations research and location theory, but also in computational geometry and robust statistics. This book provides a survey on line and hyperplane location combining analytical and geometrical methods. The major portion of the text presents new results on this topic, including the extension of some special cases to all distances derived from norms and a discussion of restricted problems in the plane. Almost all results are proven in the text and most of them are illustrated by examples. Furthermore, relations to classical facility location and to problems in computational geometry are pointed out. Audience: The book is suitable for researchers, lecturers, and graduate students working in the fields of location theory or computational geometry |
Beschreibung: | 1 Online-Ressource (XII, 200 p) |
ISBN: | 9781461553212 9781461374282 |
ISSN: | 1384-6485 |
DOI: | 10.1007/978-1-4615-5321-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420905 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781461553212 |c Online |9 978-1-4615-5321-2 | ||
020 | |a 9781461374282 |c Print |9 978-1-4613-7428-2 | ||
024 | 7 | |a 10.1007/978-1-4615-5321-2 |2 doi | |
035 | |a (OCoLC)864739801 | ||
035 | |a (DE-599)BVBBV042420905 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Schöbel, Anita |e Verfasser |4 aut | |
245 | 1 | 0 | |a Locating Lines and Hyperplanes |b Theory and Algorithms |c by Anita Schöbel |
264 | 1 | |a Boston, MA |b Springer US |c 1999 | |
300 | |a 1 Online-Ressource (XII, 200 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applied Optimization |v 25 |x 1384-6485 | |
500 | |a Line and hyperplane location problems play an important role not only in operations research and location theory, but also in computational geometry and robust statistics. This book provides a survey on line and hyperplane location combining analytical and geometrical methods. The major portion of the text presents new results on this topic, including the extension of some special cases to all distances derived from norms and a discussion of restricted problems in the plane. Almost all results are proven in the text and most of them are illustrated by examples. Furthermore, relations to classical facility location and to problems in computational geometry are pointed out. Audience: The book is suitable for researchers, lecturers, and graduate students working in the fields of location theory or computational geometry | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Matrix theory | |
650 | 4 | |a Potential theory (Mathematics) | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Linear and Multilinear Algebras, Matrix Theory | |
650 | 4 | |a Potential Theory | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-5321-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856322 |
Datensatz im Suchindex
_version_ | 1804153093384830976 |
---|---|
any_adam_object | |
author | Schöbel, Anita |
author_facet | Schöbel, Anita |
author_role | aut |
author_sort | Schöbel, Anita |
author_variant | a s as |
building | Verbundindex |
bvnumber | BV042420905 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864739801 (DE-599)BVBBV042420905 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4615-5321-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02414nmm a2200493zcb4500</leader><controlfield tag="001">BV042420905</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461553212</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4615-5321-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461374282</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-7428-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-5321-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864739801</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420905</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schöbel, Anita</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Locating Lines and Hyperplanes</subfield><subfield code="b">Theory and Algorithms</subfield><subfield code="c">by Anita Schöbel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 200 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied Optimization</subfield><subfield code="v">25</subfield><subfield code="x">1384-6485</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Line and hyperplane location problems play an important role not only in operations research and location theory, but also in computational geometry and robust statistics. This book provides a survey on line and hyperplane location combining analytical and geometrical methods. The major portion of the text presents new results on this topic, including the extension of some special cases to all distances derived from norms and a discussion of restricted problems in the plane. Almost all results are proven in the text and most of them are illustrated by examples. Furthermore, relations to classical facility location and to problems in computational geometry are pointed out. Audience: The book is suitable for researchers, lecturers, and graduate students working in the fields of location theory or computational geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear and Multilinear Algebras, Matrix Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-5321-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856322</subfield></datafield></record></collection> |
id | DE-604.BV042420905 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461553212 9781461374282 |
issn | 1384-6485 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856322 |
oclc_num | 864739801 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 200 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer US |
record_format | marc |
series2 | Applied Optimization |
spelling | Schöbel, Anita Verfasser aut Locating Lines and Hyperplanes Theory and Algorithms by Anita Schöbel Boston, MA Springer US 1999 1 Online-Ressource (XII, 200 p) txt rdacontent c rdamedia cr rdacarrier Applied Optimization 25 1384-6485 Line and hyperplane location problems play an important role not only in operations research and location theory, but also in computational geometry and robust statistics. This book provides a survey on line and hyperplane location combining analytical and geometrical methods. The major portion of the text presents new results on this topic, including the extension of some special cases to all distances derived from norms and a discussion of restricted problems in the plane. Almost all results are proven in the text and most of them are illustrated by examples. Furthermore, relations to classical facility location and to problems in computational geometry are pointed out. Audience: The book is suitable for researchers, lecturers, and graduate students working in the fields of location theory or computational geometry Mathematics Matrix theory Potential theory (Mathematics) Computer science / Mathematics Algorithms Mathematics, general Computational Mathematics and Numerical Analysis Linear and Multilinear Algebras, Matrix Theory Potential Theory Informatik Mathematik https://doi.org/10.1007/978-1-4615-5321-2 Verlag Volltext |
spellingShingle | Schöbel, Anita Locating Lines and Hyperplanes Theory and Algorithms Mathematics Matrix theory Potential theory (Mathematics) Computer science / Mathematics Algorithms Mathematics, general Computational Mathematics and Numerical Analysis Linear and Multilinear Algebras, Matrix Theory Potential Theory Informatik Mathematik |
title | Locating Lines and Hyperplanes Theory and Algorithms |
title_auth | Locating Lines and Hyperplanes Theory and Algorithms |
title_exact_search | Locating Lines and Hyperplanes Theory and Algorithms |
title_full | Locating Lines and Hyperplanes Theory and Algorithms by Anita Schöbel |
title_fullStr | Locating Lines and Hyperplanes Theory and Algorithms by Anita Schöbel |
title_full_unstemmed | Locating Lines and Hyperplanes Theory and Algorithms by Anita Schöbel |
title_short | Locating Lines and Hyperplanes |
title_sort | locating lines and hyperplanes theory and algorithms |
title_sub | Theory and Algorithms |
topic | Mathematics Matrix theory Potential theory (Mathematics) Computer science / Mathematics Algorithms Mathematics, general Computational Mathematics and Numerical Analysis Linear and Multilinear Algebras, Matrix Theory Potential Theory Informatik Mathematik |
topic_facet | Mathematics Matrix theory Potential theory (Mathematics) Computer science / Mathematics Algorithms Mathematics, general Computational Mathematics and Numerical Analysis Linear and Multilinear Algebras, Matrix Theory Potential Theory Informatik Mathematik |
url | https://doi.org/10.1007/978-1-4615-5321-2 |
work_keys_str_mv | AT schobelanita locatinglinesandhyperplanestheoryandalgorithms |