Handbook of Tables for Order Statistics from Lognormal Distributions with Applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1999
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Lognormal distributions are one of the most commonly studied models in the sta tistical literature while being most frequently used in the applied literature. The lognormal distributions have been used in problems arising from such diverse fields as hydrology, biology, communication engineering, environmental science, reliability, agriculture, medical science, mechanical engineering, material science, and pharma cology. Though the lognormal distributions have been around from the beginning of this century (see Chapter 1), much of the work concerning inferential methods for the parameters of lognormal distributions has been done in the recent past. Most of these methods of inference, particUlarly those based on censored samples, involve extensive use of numerical methods to solve some nonlinear equations. Order statistics and their moments have been discussed quite extensively in the literature for many distributions. It is very well known that the moments of order statistics can be derived explicitly only in the case of a few distributions such as exponential, uniform, power function, Pareto, and logistic. In most other cases in cluding the lognormal case, they have to be numerically determined. The moments of order statistics from a specific lognormal distribution have been tabulated ear lier. However, the moments of order statistics from general lognormal distributions have not been discussed in the statistical literature until now primarily due to the extreme computational complexity in their numerical determination |
Beschreibung: | 1 Online-Ressource (XIII, 868 p) |
ISBN: | 9781461553090 9780792357124 |
DOI: | 10.1007/978-1-4615-5309-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042420901 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781461553090 |c Online |9 978-1-4615-5309-0 | ||
020 | |a 9780792357124 |c Print |9 978-0-7923-5712-4 | ||
024 | 7 | |a 10.1007/978-1-4615-5309-0 |2 doi | |
035 | |a (OCoLC)863739702 | ||
035 | |a (DE-599)BVBBV042420901 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Balakrishnan, N. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Handbook of Tables for Order Statistics from Lognormal Distributions with Applications |c by N. Balakrishnan, William W. S. Chen |
264 | 1 | |a Boston, MA |b Springer US |c 1999 | |
300 | |a 1 Online-Ressource (XIII, 868 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Lognormal distributions are one of the most commonly studied models in the sta tistical literature while being most frequently used in the applied literature. The lognormal distributions have been used in problems arising from such diverse fields as hydrology, biology, communication engineering, environmental science, reliability, agriculture, medical science, mechanical engineering, material science, and pharma cology. Though the lognormal distributions have been around from the beginning of this century (see Chapter 1), much of the work concerning inferential methods for the parameters of lognormal distributions has been done in the recent past. Most of these methods of inference, particUlarly those based on censored samples, involve extensive use of numerical methods to solve some nonlinear equations. Order statistics and their moments have been discussed quite extensively in the literature for many distributions. It is very well known that the moments of order statistics can be derived explicitly only in the case of a few distributions such as exponential, uniform, power function, Pareto, and logistic. In most other cases in cluding the lognormal case, they have to be numerically determined. The moments of order statistics from a specific lognormal distribution have been tabulated ear lier. However, the moments of order statistics from general lognormal distributions have not been discussed in the statistical literature until now primarily due to the extreme computational complexity in their numerical determination | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Electronic data processing | |
650 | 4 | |a System safety | |
650 | 4 | |a Civil engineering | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Numeric Computing | |
650 | 4 | |a Civil Engineering | |
650 | 4 | |a Quality Control, Reliability, Safety and Risk | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Gauss-Markov-Schätzung |0 (DE-588)4156104-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tabelle |0 (DE-588)4184303-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Logarithmische Normalverteilung |0 (DE-588)4221613-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Logarithmische Normalverteilung |0 (DE-588)4221613-8 |D s |
689 | 0 | 1 | |a Tabelle |0 (DE-588)4184303-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Gauss-Markov-Schätzung |0 (DE-588)4156104-1 |D s |
689 | 1 | 1 | |a Tabelle |0 (DE-588)4184303-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Chen, William W. S. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-5309-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856318 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093375393792 |
---|---|
any_adam_object | |
author | Balakrishnan, N. |
author_facet | Balakrishnan, N. |
author_role | aut |
author_sort | Balakrishnan, N. |
author_variant | n b nb |
building | Verbundindex |
bvnumber | BV042420901 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863739702 (DE-599)BVBBV042420901 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4615-5309-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03790nmm a2200613zc 4500</leader><controlfield tag="001">BV042420901</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461553090</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4615-5309-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780792357124</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-7923-5712-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-5309-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863739702</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420901</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Balakrishnan, N.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of Tables for Order Statistics from Lognormal Distributions with Applications</subfield><subfield code="c">by N. Balakrishnan, William W. S. Chen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 868 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Lognormal distributions are one of the most commonly studied models in the sta tistical literature while being most frequently used in the applied literature. The lognormal distributions have been used in problems arising from such diverse fields as hydrology, biology, communication engineering, environmental science, reliability, agriculture, medical science, mechanical engineering, material science, and pharma cology. Though the lognormal distributions have been around from the beginning of this century (see Chapter 1), much of the work concerning inferential methods for the parameters of lognormal distributions has been done in the recent past. Most of these methods of inference, particUlarly those based on censored samples, involve extensive use of numerical methods to solve some nonlinear equations. Order statistics and their moments have been discussed quite extensively in the literature for many distributions. It is very well known that the moments of order statistics can be derived explicitly only in the case of a few distributions such as exponential, uniform, power function, Pareto, and logistic. In most other cases in cluding the lognormal case, they have to be numerically determined. The moments of order statistics from a specific lognormal distribution have been tabulated ear lier. However, the moments of order statistics from general lognormal distributions have not been discussed in the statistical literature until now primarily due to the extreme computational complexity in their numerical determination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System safety</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Civil engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numeric Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Civil Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quality Control, Reliability, Safety and Risk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gauss-Markov-Schätzung</subfield><subfield code="0">(DE-588)4156104-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tabelle</subfield><subfield code="0">(DE-588)4184303-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Logarithmische Normalverteilung</subfield><subfield code="0">(DE-588)4221613-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Logarithmische Normalverteilung</subfield><subfield code="0">(DE-588)4221613-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Tabelle</subfield><subfield code="0">(DE-588)4184303-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gauss-Markov-Schätzung</subfield><subfield code="0">(DE-588)4156104-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Tabelle</subfield><subfield code="0">(DE-588)4184303-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, William W. S.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-5309-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856318</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420901 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461553090 9780792357124 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856318 |
oclc_num | 863739702 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 868 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer US |
record_format | marc |
spelling | Balakrishnan, N. Verfasser aut Handbook of Tables for Order Statistics from Lognormal Distributions with Applications by N. Balakrishnan, William W. S. Chen Boston, MA Springer US 1999 1 Online-Ressource (XIII, 868 p) txt rdacontent c rdamedia cr rdacarrier Lognormal distributions are one of the most commonly studied models in the sta tistical literature while being most frequently used in the applied literature. The lognormal distributions have been used in problems arising from such diverse fields as hydrology, biology, communication engineering, environmental science, reliability, agriculture, medical science, mechanical engineering, material science, and pharma cology. Though the lognormal distributions have been around from the beginning of this century (see Chapter 1), much of the work concerning inferential methods for the parameters of lognormal distributions has been done in the recent past. Most of these methods of inference, particUlarly those based on censored samples, involve extensive use of numerical methods to solve some nonlinear equations. Order statistics and their moments have been discussed quite extensively in the literature for many distributions. It is very well known that the moments of order statistics can be derived explicitly only in the case of a few distributions such as exponential, uniform, power function, Pareto, and logistic. In most other cases in cluding the lognormal case, they have to be numerically determined. The moments of order statistics from a specific lognormal distribution have been tabulated ear lier. However, the moments of order statistics from general lognormal distributions have not been discussed in the statistical literature until now primarily due to the extreme computational complexity in their numerical determination Statistics Electronic data processing System safety Civil engineering Statistics, general Numeric Computing Civil Engineering Quality Control, Reliability, Safety and Risk Datenverarbeitung Statistik Gauss-Markov-Schätzung (DE-588)4156104-1 gnd rswk-swf Tabelle (DE-588)4184303-4 gnd rswk-swf Logarithmische Normalverteilung (DE-588)4221613-8 gnd rswk-swf Logarithmische Normalverteilung (DE-588)4221613-8 s Tabelle (DE-588)4184303-4 s 1\p DE-604 Gauss-Markov-Schätzung (DE-588)4156104-1 s 2\p DE-604 Chen, William W. S. Sonstige oth https://doi.org/10.1007/978-1-4615-5309-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Balakrishnan, N. Handbook of Tables for Order Statistics from Lognormal Distributions with Applications Statistics Electronic data processing System safety Civil engineering Statistics, general Numeric Computing Civil Engineering Quality Control, Reliability, Safety and Risk Datenverarbeitung Statistik Gauss-Markov-Schätzung (DE-588)4156104-1 gnd Tabelle (DE-588)4184303-4 gnd Logarithmische Normalverteilung (DE-588)4221613-8 gnd |
subject_GND | (DE-588)4156104-1 (DE-588)4184303-4 (DE-588)4221613-8 |
title | Handbook of Tables for Order Statistics from Lognormal Distributions with Applications |
title_auth | Handbook of Tables for Order Statistics from Lognormal Distributions with Applications |
title_exact_search | Handbook of Tables for Order Statistics from Lognormal Distributions with Applications |
title_full | Handbook of Tables for Order Statistics from Lognormal Distributions with Applications by N. Balakrishnan, William W. S. Chen |
title_fullStr | Handbook of Tables for Order Statistics from Lognormal Distributions with Applications by N. Balakrishnan, William W. S. Chen |
title_full_unstemmed | Handbook of Tables for Order Statistics from Lognormal Distributions with Applications by N. Balakrishnan, William W. S. Chen |
title_short | Handbook of Tables for Order Statistics from Lognormal Distributions with Applications |
title_sort | handbook of tables for order statistics from lognormal distributions with applications |
topic | Statistics Electronic data processing System safety Civil engineering Statistics, general Numeric Computing Civil Engineering Quality Control, Reliability, Safety and Risk Datenverarbeitung Statistik Gauss-Markov-Schätzung (DE-588)4156104-1 gnd Tabelle (DE-588)4184303-4 gnd Logarithmische Normalverteilung (DE-588)4221613-8 gnd |
topic_facet | Statistics Electronic data processing System safety Civil engineering Statistics, general Numeric Computing Civil Engineering Quality Control, Reliability, Safety and Risk Datenverarbeitung Statistik Gauss-Markov-Schätzung Tabelle Logarithmische Normalverteilung |
url | https://doi.org/10.1007/978-1-4615-5309-0 |
work_keys_str_mv | AT balakrishnann handbookoftablesfororderstatisticsfromlognormaldistributionswithapplications AT chenwilliamws handbookoftablesfororderstatisticsfromlognormaldistributionswithapplications |