Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2000
|
Schriftenreihe: | Nonconvex Optimization and Its Applications
45 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Everything should be made as simple as possible, but not simpler. (Albert Einstein, Readers Digest, 1977) The modern practice of creating technical systems and technological processes of high efficiency besides the employment of new principles, new materials, new physical effects and other new solutions ( which is very traditional and plays the key role in the selection of the general structure of the object to be designed) also includes the choice of the best combination for the set of parameters (geometrical sizes, electrical and strength characteristics, etc.) concretizing this general structure, because the Variation of these parameters ( with the structure or linkage being already set defined) can essentially affect the objective performance indexes. The mathematical tools for choosing these best combinations are exactly what is this book about. With the advent of computers and the computer-aided design the probations of the selected variants are usually performed not for the real examples ( this may require some very expensive building of sample options and of the special installations to test them ), but by the analysis of the corresponding mathematical models. The sophistication of the mathematical models for the objects to be designed, which is the natural consequence of the raising complexity of these objects, greatly complicates the objective performance analysis. Today, the main (and very often the only) available instrument for such an analysis is computeraided simulation of an object's behavior, based on numerical experiments with its mathematical model |
Beschreibung: | 1 Online-Ressource (XXVIII, 704 p) |
ISBN: | 9781461546771 9781461371175 |
ISSN: | 1571-568X |
DOI: | 10.1007/978-1-4615-4677-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420890 | ||
003 | DE-604 | ||
005 | 20180109 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781461546771 |c Online |9 978-1-4615-4677-1 | ||
020 | |a 9781461371175 |c Print |9 978-1-4613-7117-5 | ||
024 | 7 | |a 10.1007/978-1-4615-4677-1 |2 doi | |
035 | |a (OCoLC)1184688373 | ||
035 | |a (DE-599)BVBBV042420890 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.6 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Strongin, Roman G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Global Optimization with Non-Convex Constraints |b Sequential and Parallel Algorithms |c by Roman G. Strongin, Yaroslav D. Sergeyev |
264 | 1 | |a Boston, MA |b Springer US |c 2000 | |
300 | |a 1 Online-Ressource (XXVIII, 704 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Nonconvex Optimization and Its Applications |v 45 |x 1571-568X | |
500 | |a Everything should be made as simple as possible, but not simpler. (Albert Einstein, Readers Digest, 1977) The modern practice of creating technical systems and technological processes of high efficiency besides the employment of new principles, new materials, new physical effects and other new solutions ( which is very traditional and plays the key role in the selection of the general structure of the object to be designed) also includes the choice of the best combination for the set of parameters (geometrical sizes, electrical and strength characteristics, etc.) concretizing this general structure, because the Variation of these parameters ( with the structure or linkage being already set defined) can essentially affect the objective performance indexes. The mathematical tools for choosing these best combinations are exactly what is this book about. With the advent of computers and the computer-aided design the probations of the selected variants are usually performed not for the real examples ( this may require some very expensive building of sample options and of the special installations to test them ), but by the analysis of the corresponding mathematical models. The sophistication of the mathematical models for the objects to be designed, which is the natural consequence of the raising complexity of these objects, greatly complicates the objective performance analysis. Today, the main (and very often the only) available instrument for such an analysis is computeraided simulation of an object's behavior, based on numerical experiments with its mathematical model | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Information theory | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Engineering | |
650 | 4 | |a Optimization | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Theory of Computation | |
650 | 4 | |a Engineering, general | |
650 | 4 | |a Informatik | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Globale Optimierung |0 (DE-588)4140067-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtkonvexe Optimierung |0 (DE-588)4309215-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Globale Optimierung |0 (DE-588)4140067-7 |D s |
689 | 0 | 1 | |a Nichtkonvexe Optimierung |0 (DE-588)4309215-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Sergeyev, Yaroslav D. |e Sonstige |4 oth | |
830 | 0 | |a Nonconvex Optimization and Its Applications |v 45 |w (DE-604)BV010085908 |9 45 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-4677-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856307 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093344985088 |
---|---|
any_adam_object | |
author | Strongin, Roman G. |
author_facet | Strongin, Roman G. |
author_role | aut |
author_sort | Strongin, Roman G. |
author_variant | r g s rg rgs |
building | Verbundindex |
bvnumber | BV042420890 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184688373 (DE-599)BVBBV042420890 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4615-4677-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03829nmm a2200613zcb4500</leader><controlfield tag="001">BV042420890</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180109 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461546771</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4615-4677-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461371175</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-7117-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-4677-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184688373</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420890</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Strongin, Roman G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global Optimization with Non-Convex Constraints</subfield><subfield code="b">Sequential and Parallel Algorithms</subfield><subfield code="c">by Roman G. Strongin, Yaroslav D. Sergeyev</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXVIII, 704 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Nonconvex Optimization and Its Applications</subfield><subfield code="v">45</subfield><subfield code="x">1571-568X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Everything should be made as simple as possible, but not simpler. (Albert Einstein, Readers Digest, 1977) The modern practice of creating technical systems and technological processes of high efficiency besides the employment of new principles, new materials, new physical effects and other new solutions ( which is very traditional and plays the key role in the selection of the general structure of the object to be designed) also includes the choice of the best combination for the set of parameters (geometrical sizes, electrical and strength characteristics, etc.) concretizing this general structure, because the Variation of these parameters ( with the structure or linkage being already set defined) can essentially affect the objective performance indexes. The mathematical tools for choosing these best combinations are exactly what is this book about. With the advent of computers and the computer-aided design the probations of the selected variants are usually performed not for the real examples ( this may require some very expensive building of sample options and of the special installations to test them ), but by the analysis of the corresponding mathematical models. The sophistication of the mathematical models for the objects to be designed, which is the natural consequence of the raising complexity of these objects, greatly complicates the objective performance analysis. Today, the main (and very often the only) available instrument for such an analysis is computeraided simulation of an object's behavior, based on numerical experiments with its mathematical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory of Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Optimierung</subfield><subfield code="0">(DE-588)4140067-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtkonvexe Optimierung</subfield><subfield code="0">(DE-588)4309215-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Globale Optimierung</subfield><subfield code="0">(DE-588)4140067-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtkonvexe Optimierung</subfield><subfield code="0">(DE-588)4309215-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sergeyev, Yaroslav D.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Nonconvex Optimization and Its Applications</subfield><subfield code="v">45</subfield><subfield code="w">(DE-604)BV010085908</subfield><subfield code="9">45</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-4677-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856307</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420890 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461546771 9781461371175 |
issn | 1571-568X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856307 |
oclc_num | 1184688373 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXVIII, 704 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer US |
record_format | marc |
series | Nonconvex Optimization and Its Applications |
series2 | Nonconvex Optimization and Its Applications |
spelling | Strongin, Roman G. Verfasser aut Global Optimization with Non-Convex Constraints Sequential and Parallel Algorithms by Roman G. Strongin, Yaroslav D. Sergeyev Boston, MA Springer US 2000 1 Online-Ressource (XXVIII, 704 p) txt rdacontent c rdamedia cr rdacarrier Nonconvex Optimization and Its Applications 45 1571-568X Everything should be made as simple as possible, but not simpler. (Albert Einstein, Readers Digest, 1977) The modern practice of creating technical systems and technological processes of high efficiency besides the employment of new principles, new materials, new physical effects and other new solutions ( which is very traditional and plays the key role in the selection of the general structure of the object to be designed) also includes the choice of the best combination for the set of parameters (geometrical sizes, electrical and strength characteristics, etc.) concretizing this general structure, because the Variation of these parameters ( with the structure or linkage being already set defined) can essentially affect the objective performance indexes. The mathematical tools for choosing these best combinations are exactly what is this book about. With the advent of computers and the computer-aided design the probations of the selected variants are usually performed not for the real examples ( this may require some very expensive building of sample options and of the special installations to test them ), but by the analysis of the corresponding mathematical models. The sophistication of the mathematical models for the objects to be designed, which is the natural consequence of the raising complexity of these objects, greatly complicates the objective performance analysis. Today, the main (and very often the only) available instrument for such an analysis is computeraided simulation of an object's behavior, based on numerical experiments with its mathematical model Mathematics Information theory Computer science / Mathematics Algorithms Mathematical optimization Engineering Optimization Computational Mathematics and Numerical Analysis Theory of Computation Engineering, general Informatik Ingenieurwissenschaften Mathematik Globale Optimierung (DE-588)4140067-7 gnd rswk-swf Nichtkonvexe Optimierung (DE-588)4309215-9 gnd rswk-swf Globale Optimierung (DE-588)4140067-7 s Nichtkonvexe Optimierung (DE-588)4309215-9 s 1\p DE-604 Sergeyev, Yaroslav D. Sonstige oth Nonconvex Optimization and Its Applications 45 (DE-604)BV010085908 45 https://doi.org/10.1007/978-1-4615-4677-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Strongin, Roman G. Global Optimization with Non-Convex Constraints Sequential and Parallel Algorithms Nonconvex Optimization and Its Applications Mathematics Information theory Computer science / Mathematics Algorithms Mathematical optimization Engineering Optimization Computational Mathematics and Numerical Analysis Theory of Computation Engineering, general Informatik Ingenieurwissenschaften Mathematik Globale Optimierung (DE-588)4140067-7 gnd Nichtkonvexe Optimierung (DE-588)4309215-9 gnd |
subject_GND | (DE-588)4140067-7 (DE-588)4309215-9 |
title | Global Optimization with Non-Convex Constraints Sequential and Parallel Algorithms |
title_auth | Global Optimization with Non-Convex Constraints Sequential and Parallel Algorithms |
title_exact_search | Global Optimization with Non-Convex Constraints Sequential and Parallel Algorithms |
title_full | Global Optimization with Non-Convex Constraints Sequential and Parallel Algorithms by Roman G. Strongin, Yaroslav D. Sergeyev |
title_fullStr | Global Optimization with Non-Convex Constraints Sequential and Parallel Algorithms by Roman G. Strongin, Yaroslav D. Sergeyev |
title_full_unstemmed | Global Optimization with Non-Convex Constraints Sequential and Parallel Algorithms by Roman G. Strongin, Yaroslav D. Sergeyev |
title_short | Global Optimization with Non-Convex Constraints |
title_sort | global optimization with non convex constraints sequential and parallel algorithms |
title_sub | Sequential and Parallel Algorithms |
topic | Mathematics Information theory Computer science / Mathematics Algorithms Mathematical optimization Engineering Optimization Computational Mathematics and Numerical Analysis Theory of Computation Engineering, general Informatik Ingenieurwissenschaften Mathematik Globale Optimierung (DE-588)4140067-7 gnd Nichtkonvexe Optimierung (DE-588)4309215-9 gnd |
topic_facet | Mathematics Information theory Computer science / Mathematics Algorithms Mathematical optimization Engineering Optimization Computational Mathematics and Numerical Analysis Theory of Computation Engineering, general Informatik Ingenieurwissenschaften Mathematik Globale Optimierung Nichtkonvexe Optimierung |
url | https://doi.org/10.1007/978-1-4615-4677-1 |
volume_link | (DE-604)BV010085908 |
work_keys_str_mv | AT stronginromang globaloptimizationwithnonconvexconstraintssequentialandparallelalgorithms AT sergeyevyaroslavd globaloptimizationwithnonconvexconstraintssequentialandparallelalgorithms |