A Set of Examples of Global and Discrete Optimization: Applications of Bayesian Heuristic Approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2000
|
Schriftenreihe: | Applied Optimization
41 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book shows how the Bayesian Approach (BA) improves wellknown heuristics by randomizing and optimizing their parameters. That is the Bayesian Heuristic Approach (BHA). The ten in-depth examples are designed to teach Operations Research using Internet. Each example is a simple representation of some important family of real-life problems. The accompanying software can be run by remote Internet users. The supporting web-sites include software for Java, C++, and other languages. A theoretical setting is described in which one can discuss a Bayesian adaptive choice of heuristics for discrete and global optimization problems. The techniques are evaluated in the spirit of the average rather than the worst case analysis. In this context, "heuristics" are understood to be an expert opinion defining how to solve a family of problems of discrete or global optimization. The term "Bayesian Heuristic Approach" means that one defines a set of heuristics and fixes some prior distribution on the results obtained. By applying BHA one is looking for the heuristic that reduces the average deviation from the global optimum. The theoretical discussions serve as an introduction to examples that are the main part of the book. All the examples are interconnected. Different examples illustrate different points of the general subject. However, one can consider each example separately, too |
Beschreibung: | 1 Online-Ressource (XIV, 322 p) |
ISBN: | 9781461546719 9781461371144 |
ISSN: | 1384-6485 |
DOI: | 10.1007/978-1-4615-4671-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420887 | ||
003 | DE-604 | ||
005 | 20170922 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781461546719 |c Online |9 978-1-4615-4671-9 | ||
020 | |a 9781461371144 |c Print |9 978-1-4613-7114-4 | ||
024 | 7 | |a 10.1007/978-1-4615-4671-9 |2 doi | |
035 | |a (OCoLC)863905691 | ||
035 | |a (DE-599)BVBBV042420887 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.6 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Mockus, Jonas |e Verfasser |4 aut | |
245 | 1 | 0 | |a A Set of Examples of Global and Discrete Optimization |b Applications of Bayesian Heuristic Approach |c by Jonas Mockus |
264 | 1 | |a Boston, MA |b Springer US |c 2000 | |
300 | |a 1 Online-Ressource (XIV, 322 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Applied Optimization |v 41 |x 1384-6485 | |
500 | |a This book shows how the Bayesian Approach (BA) improves wellknown heuristics by randomizing and optimizing their parameters. That is the Bayesian Heuristic Approach (BHA). The ten in-depth examples are designed to teach Operations Research using Internet. Each example is a simple representation of some important family of real-life problems. The accompanying software can be run by remote Internet users. The supporting web-sites include software for Java, C++, and other languages. A theoretical setting is described in which one can discuss a Bayesian adaptive choice of heuristics for discrete and global optimization problems. The techniques are evaluated in the spirit of the average rather than the worst case analysis. In this context, "heuristics" are understood to be an expert opinion defining how to solve a family of problems of discrete or global optimization. The term "Bayesian Heuristic Approach" means that one defines a set of heuristics and fixes some prior distribution on the results obtained. By applying BHA one is looking for the heuristic that reduces the average deviation from the global optimum. The theoretical discussions serve as an introduction to examples that are the main part of the book. All the examples are interconnected. Different examples illustrate different points of the general subject. However, one can consider each example separately, too | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Operations research | |
650 | 4 | |a Optimization | |
650 | 4 | |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences | |
650 | 4 | |a Operation Research/Decision Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Diskrete Optimierung |0 (DE-588)4150179-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Globale Optimierung |0 (DE-588)4140067-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Diskrete Optimierung |0 (DE-588)4150179-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Globale Optimierung |0 (DE-588)4140067-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
830 | 0 | |a Applied Optimization |v 41 |w (DE-604)BV010841718 |9 41 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-4671-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856304 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093311430656 |
---|---|
any_adam_object | |
author | Mockus, Jonas |
author_facet | Mockus, Jonas |
author_role | aut |
author_sort | Mockus, Jonas |
author_variant | j m jm |
building | Verbundindex |
bvnumber | BV042420887 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863905691 (DE-599)BVBBV042420887 |
dewey-full | 511.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.6 |
dewey-search | 511.6 |
dewey-sort | 3511.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4615-4671-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03488nmm a2200565zcb4500</leader><controlfield tag="001">BV042420887</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170922 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461546719</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4615-4671-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461371144</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-7114-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-4671-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863905691</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420887</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mockus, Jonas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Set of Examples of Global and Discrete Optimization</subfield><subfield code="b">Applications of Bayesian Heuristic Approach</subfield><subfield code="c">by Jonas Mockus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 322 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied Optimization</subfield><subfield code="v">41</subfield><subfield code="x">1384-6485</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book shows how the Bayesian Approach (BA) improves wellknown heuristics by randomizing and optimizing their parameters. That is the Bayesian Heuristic Approach (BHA). The ten in-depth examples are designed to teach Operations Research using Internet. Each example is a simple representation of some important family of real-life problems. The accompanying software can be run by remote Internet users. The supporting web-sites include software for Java, C++, and other languages. A theoretical setting is described in which one can discuss a Bayesian adaptive choice of heuristics for discrete and global optimization problems. The techniques are evaluated in the spirit of the average rather than the worst case analysis. In this context, "heuristics" are understood to be an expert opinion defining how to solve a family of problems of discrete or global optimization. The term "Bayesian Heuristic Approach" means that one defines a set of heuristics and fixes some prior distribution on the results obtained. By applying BHA one is looking for the heuristic that reduces the average deviation from the global optimum. The theoretical discussions serve as an introduction to examples that are the main part of the book. All the examples are interconnected. Different examples illustrate different points of the general subject. However, one can consider each example separately, too</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operation Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskrete Optimierung</subfield><subfield code="0">(DE-588)4150179-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Optimierung</subfield><subfield code="0">(DE-588)4140067-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diskrete Optimierung</subfield><subfield code="0">(DE-588)4150179-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Globale Optimierung</subfield><subfield code="0">(DE-588)4140067-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied Optimization</subfield><subfield code="v">41</subfield><subfield code="w">(DE-604)BV010841718</subfield><subfield code="9">41</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-4671-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856304</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420887 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461546719 9781461371144 |
issn | 1384-6485 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856304 |
oclc_num | 863905691 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 322 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer US |
record_format | marc |
series | Applied Optimization |
series2 | Applied Optimization |
spelling | Mockus, Jonas Verfasser aut A Set of Examples of Global and Discrete Optimization Applications of Bayesian Heuristic Approach by Jonas Mockus Boston, MA Springer US 2000 1 Online-Ressource (XIV, 322 p) txt rdacontent c rdamedia cr rdacarrier Applied Optimization 41 1384-6485 This book shows how the Bayesian Approach (BA) improves wellknown heuristics by randomizing and optimizing their parameters. That is the Bayesian Heuristic Approach (BHA). The ten in-depth examples are designed to teach Operations Research using Internet. Each example is a simple representation of some important family of real-life problems. The accompanying software can be run by remote Internet users. The supporting web-sites include software for Java, C++, and other languages. A theoretical setting is described in which one can discuss a Bayesian adaptive choice of heuristics for discrete and global optimization problems. The techniques are evaluated in the spirit of the average rather than the worst case analysis. In this context, "heuristics" are understood to be an expert opinion defining how to solve a family of problems of discrete or global optimization. The term "Bayesian Heuristic Approach" means that one defines a set of heuristics and fixes some prior distribution on the results obtained. By applying BHA one is looking for the heuristic that reduces the average deviation from the global optimum. The theoretical discussions serve as an introduction to examples that are the main part of the book. All the examples are interconnected. Different examples illustrate different points of the general subject. However, one can consider each example separately, too Mathematics Combinatorics Mathematical optimization Operations research Optimization Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Operation Research/Decision Theory Mathematik Diskrete Optimierung (DE-588)4150179-2 gnd rswk-swf Globale Optimierung (DE-588)4140067-7 gnd rswk-swf Diskrete Optimierung (DE-588)4150179-2 s 1\p DE-604 Globale Optimierung (DE-588)4140067-7 s 2\p DE-604 Applied Optimization 41 (DE-604)BV010841718 41 https://doi.org/10.1007/978-1-4615-4671-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mockus, Jonas A Set of Examples of Global and Discrete Optimization Applications of Bayesian Heuristic Approach Applied Optimization Mathematics Combinatorics Mathematical optimization Operations research Optimization Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Operation Research/Decision Theory Mathematik Diskrete Optimierung (DE-588)4150179-2 gnd Globale Optimierung (DE-588)4140067-7 gnd |
subject_GND | (DE-588)4150179-2 (DE-588)4140067-7 |
title | A Set of Examples of Global and Discrete Optimization Applications of Bayesian Heuristic Approach |
title_auth | A Set of Examples of Global and Discrete Optimization Applications of Bayesian Heuristic Approach |
title_exact_search | A Set of Examples of Global and Discrete Optimization Applications of Bayesian Heuristic Approach |
title_full | A Set of Examples of Global and Discrete Optimization Applications of Bayesian Heuristic Approach by Jonas Mockus |
title_fullStr | A Set of Examples of Global and Discrete Optimization Applications of Bayesian Heuristic Approach by Jonas Mockus |
title_full_unstemmed | A Set of Examples of Global and Discrete Optimization Applications of Bayesian Heuristic Approach by Jonas Mockus |
title_short | A Set of Examples of Global and Discrete Optimization |
title_sort | a set of examples of global and discrete optimization applications of bayesian heuristic approach |
title_sub | Applications of Bayesian Heuristic Approach |
topic | Mathematics Combinatorics Mathematical optimization Operations research Optimization Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Operation Research/Decision Theory Mathematik Diskrete Optimierung (DE-588)4150179-2 gnd Globale Optimierung (DE-588)4140067-7 gnd |
topic_facet | Mathematics Combinatorics Mathematical optimization Operations research Optimization Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Operation Research/Decision Theory Mathematik Diskrete Optimierung Globale Optimierung |
url | https://doi.org/10.1007/978-1-4615-4671-9 |
volume_link | (DE-604)BV010841718 |
work_keys_str_mv | AT mockusjonas asetofexamplesofglobalanddiscreteoptimizationapplicationsofbayesianheuristicapproach |